AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation
- URL: http://arxiv.org/abs/2407.07889v1
- Date: Wed, 10 Jul 2024 17:57:04 GMT
- Title: AdaptiGraph: Material-Adaptive Graph-Based Neural Dynamics for Robotic Manipulation
- Authors: Kaifeng Zhang, Baoyu Li, Kris Hauser, Yunzhu Li,
- Abstract summary: This paper introduces AdaptiGraph, a learning-based dynamics modeling approach.
It enables robots to predict, adapt to, and control a wide array of challenging deformable materials.
On prediction and manipulation tasks involving a diverse set of real-world deformable objects, our method exhibits superior prediction accuracy and task proficiency.
- Score: 30.367498271886866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Predictive models are a crucial component of many robotic systems. Yet, constructing accurate predictive models for a variety of deformable objects, especially those with unknown physical properties, remains a significant challenge. This paper introduces AdaptiGraph, a learning-based dynamics modeling approach that enables robots to predict, adapt to, and control a wide array of challenging deformable materials with unknown physical properties. AdaptiGraph leverages the highly flexible graph-based neural dynamics (GBND) framework, which represents material bits as particles and employs a graph neural network (GNN) to predict particle motion. Its key innovation is a unified physical property-conditioned GBND model capable of predicting the motions of diverse materials with varying physical properties without retraining. Upon encountering new materials during online deployment, AdaptiGraph utilizes a physical property optimization process for a few-shot adaptation of the model, enhancing its fit to the observed interaction data. The adapted models can precisely simulate the dynamics and predict the motion of various deformable materials, such as ropes, granular media, rigid boxes, and cloth, while adapting to different physical properties, including stiffness, granular size, and center of pressure. On prediction and manipulation tasks involving a diverse set of real-world deformable objects, our method exhibits superior prediction accuracy and task proficiency over non-material-conditioned and non-adaptive models. The project page is available at https://robopil.github.io/adaptigraph/ .
Related papers
- Physics-Encoded Graph Neural Networks for Deformation Prediction under
Contact [87.69278096528156]
In robotics, it's crucial to understand object deformation during tactile interactions.
We introduce a method using Physics-Encoded Graph Neural Networks (GNNs) for such predictions.
We've made our code and dataset public to advance research in robotic simulation and grasping.
arXiv Detail & Related papers (2024-02-05T19:21:52Z) - DiffuseBot: Breeding Soft Robots With Physics-Augmented Generative
Diffusion Models [102.13968267347553]
We present DiffuseBot, a physics-augmented diffusion model that generates soft robot morphologies capable of excelling in a wide spectrum of tasks.
We showcase a range of simulated and fabricated robots along with their capabilities.
arXiv Detail & Related papers (2023-11-28T18:58:48Z) - Learning Physical Dynamics with Subequivariant Graph Neural Networks [99.41677381754678]
Graph Neural Networks (GNNs) have become a prevailing tool for learning physical dynamics.
Physical laws abide by symmetry, which is a vital inductive bias accounting for model generalization.
Our model achieves on average over 3% enhancement in contact prediction accuracy across 8 scenarios on Physion and 2X lower rollout MSE on RigidFall.
arXiv Detail & Related papers (2022-10-13T10:00:30Z) - Calibrating constitutive models with full-field data via physics
informed neural networks [0.0]
We propose a physics-informed deep-learning framework for the discovery of model parameterizations given full-field displacement data.
We work with the weak form of the governing equations rather than the strong form to impose physical constraints upon the neural network predictions.
We demonstrate that informed machine learning is an enabling technology and may shift the paradigm of how full-field experimental data is utilized to calibrate models.
arXiv Detail & Related papers (2022-03-30T18:07:44Z) - Learning to Simulate Unseen Physical Systems with Graph Neural Networks [13.202870928432045]
"Graph-based Physics Engine" is a machine learning method embedded with physical priors and material parameters.
We demonstrate that GPE can generalize to materials with different properties not seen in the training set.
In addition, introducing the law of momentum conservation in the model significantly improves the efficiency and stability of learning.
arXiv Detail & Related papers (2022-01-28T07:56:46Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
We focus on the integration of incomplete physics models into deep generative models.
We propose a VAE architecture in which a part of the latent space is grounded by physics.
We demonstrate generative performance improvements over a set of synthetic and real-world datasets.
arXiv Detail & Related papers (2021-02-25T20:28:52Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z) - Visual Grounding of Learned Physical Models [66.04898704928517]
Humans intuitively recognize objects' physical properties and predict their motion, even when the objects are engaged in complicated interactions.
We present a neural model that simultaneously reasons about physics and makes future predictions based on visual and dynamics priors.
Experiments show that our model can infer the physical properties within a few observations, which allows the model to quickly adapt to unseen scenarios and make accurate predictions into the future.
arXiv Detail & Related papers (2020-04-28T17:06:38Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
We present a machine learning framework and model implementation that can learn to simulate a wide variety of challenging physical domains.
Our framework---which we term "Graph Network-based Simulators" (GNS)--represents the state of a physical system with particles, expressed as nodes in a graph, and computes dynamics via learned message-passing.
Our results show that our model can generalize from single-timestep predictions with thousands of particles during training, to different initial conditions, thousands of timesteps, and at least an order of magnitude more particles at test time.
arXiv Detail & Related papers (2020-02-21T16:44:28Z) - A machine learning based plasticity model using proper orthogonal
decomposition [0.0]
Data-driven material models have many advantages over classical numerical approaches.
One approach to develop a data-driven material model is to use machine learning tools.
A machine learning based material modelling framework is proposed for both elasticity and plasticity.
arXiv Detail & Related papers (2020-01-07T15:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.