Adaptive Optimizer for Automated Hyperparameter Optimization Problem
- URL: http://arxiv.org/abs/2201.12124v1
- Date: Fri, 28 Jan 2022 13:58:10 GMT
- Title: Adaptive Optimizer for Automated Hyperparameter Optimization Problem
- Authors: Huayuan Sun
- Abstract summary: In this paper, we present a general framework that is able to construct an adaptive framework, which automatically adjust the appropriate parameters in the process of optimization.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The choices of hyperparameters have critical effects on the performance of
machine learning models. In this paper, we present a general framework that is
able to construct an adaptive optimizer, which automatically adjust the
appropriate algorithm and parameters in the process of optimization. Examining
the method of adaptive optimizer, we product an example of using genetic
algorithm to construct an adaptive optimizer based on Bayesian Optimizer and
compared effectiveness with original optimizer. Especially, It has great
advantages in parallel optimization.
Related papers
- Adaptive Bayesian Optimization for High-Precision Motion Systems [2.073673208115137]
We propose a real-time purely data-driven, model-free approach for adaptive control, by online tuning low-level controller parameters.
We base our algorithm on GoOSE, an algorithm for safe and sample-efficient Bayesian optimization.
We evaluate the algorithm's performance on a real precision-motion system utilized in semiconductor industry applications.
arXiv Detail & Related papers (2024-04-22T21:58:23Z) - MADA: Meta-Adaptive Optimizers through hyper-gradient Descent [73.1383658672682]
We introduce Meta-Adaptives (MADA), a unified framework that can generalize several known convergences and dynamically learn the most suitable one during training.
We empirically compare MADA to other populars on vision and language tasks, and find that MADA consistently outperforms Adam and other populars.
We also propose AVGrad, a modification of AMS that replaces the maximum operator with averaging, which is more suitable for hyper-gradient optimization.
arXiv Detail & Related papers (2024-01-17T00:16:46Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Optimistic Optimization of Gaussian Process Samples [30.226274682578172]
A competing, computationally more efficient, global optimization framework is optimistic optimization, which exploits prior knowledge about the geometry of the search space in form of a dissimilarity function.
We argue that there is a new research domain between geometric and probabilistic search, i.e. methods that run drastically faster than traditional Bayesian optimization, while retaining some of the crucial functionality of Bayesian optimization.
arXiv Detail & Related papers (2022-09-02T09:06:24Z) - Optimizing Large-Scale Hyperparameters via Automated Learning Algorithm [97.66038345864095]
We propose a new hyperparameter optimization method with zeroth-order hyper-gradients (HOZOG)
Specifically, we first formulate hyperparameter optimization as an A-based constrained optimization problem.
Then, we use the average zeroth-order hyper-gradients to update hyper parameters.
arXiv Detail & Related papers (2021-02-17T21:03:05Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
We study the existence, uniqueness and consistency of regret-optimal algorithms.
By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics.
We present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret.
arXiv Detail & Related papers (2020-12-31T19:13:53Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
Bilevel optimization is a tool for many machine learning problems.
We propose a novel stoc-efficientgradient estimator named stoc-BiO.
arXiv Detail & Related papers (2020-10-15T18:09:48Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - BOSH: Bayesian Optimization by Sampling Hierarchically [10.10241176664951]
We propose a novel BO routine pairing a hierarchical Gaussian process with an information-theoretic framework to generate a growing pool of realizations.
We demonstrate that BOSH provides more efficient and higher-precision optimization than standard BO across synthetic benchmarks, simulation optimization, reinforcement learning and hyper- parameter tuning tasks.
arXiv Detail & Related papers (2020-07-02T07:35:49Z) - Towards Automatic Bayesian Optimization: A first step involving
acquisition functions [0.0]
Bayesian optimization is the state of the art technique for the optimization of black boxes, i.e., functions where we do not have access to their analytical expression.
We propose a first attempt over automatic bayesian optimization by exploring several techniques that automatically tune the acquisition function.
arXiv Detail & Related papers (2020-03-21T12:22:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.