論文の概要: Compositionality-Aware Graph2Seq Learning
- arxiv url: http://arxiv.org/abs/2201.12178v1
- Date: Fri, 28 Jan 2022 15:22:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-01-31 15:37:12.490402
- Title: Compositionality-Aware Graph2Seq Learning
- Title(参考訳): 構成性を考慮したGraph2Seq学習
- Authors: Takeshi D. Itoh and Takatomi Kubo and Kazushi Ikeda
- Abstract要約: グラフにおける合成性は、多くの graph2seq タスクの出力シーケンスにおける合成性に関連付けられる。
マルチレベルアテンションプーリング(MLAP)アーキテクチャを採用し、複数のレベルの情報ロケータからグラフ表現を集約する。
MLAPアーキテクチャを持つモデルは、7倍以上のパラメータで従来の最先端モデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 2.127049691404299
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Graphs are a highly expressive data structure, but it is often difficult for
humans to find patterns from a complex graph. Hence, generating
human-interpretable sequences from graphs have gained interest, called
graph2seq learning. It is expected that the compositionality in a graph can be
associated to the compositionality in the output sequence in many graph2seq
tasks. Therefore, applying compositionality-aware GNN architecture would
improve the model performance. In this study, we adopt the multi-level
attention pooling (MLAP) architecture, that can aggregate graph representations
from multiple levels of information localities. As a real-world example, we
take up the extreme source code summarization task, where a model estimate the
name of a program function from its source code. We demonstrate that the model
having the MLAP architecture outperform the previous state-of-the-art model
with more than seven times fewer parameters than it.
- Abstract(参考訳): グラフは非常に表現力のあるデータ構造であるが、複雑なグラフからパターンを見つけることはしばしば困難である。
したがって、グラフから人間の解釈可能なシーケンスを生成することは、Graph2seq Learningと呼ばれる関心を集めている。
グラフにおける構成性は、多くのグラフ2seqタスクの出力シーケンスにおける構成性に関連付けられることが期待される。
したがって、構成性に配慮したGNNアーキテクチャを適用することで、モデルの性能が向上する。
本研究では,複数レベルの情報局所性からグラフ表現を集約するマルチレベルアテンションプーリング(MLAP)アーキテクチャを採用する。
実世界の例として、極端にソースコードの要約タスクを取り上げ、モデルがそのソースコードからプログラム関数の名前を推定する。
MLAPアーキテクチャを持つモデルは,従来の最先端モデルよりも7倍以上少ないパラメータで性能を向上することを示した。
関連論文リスト
- Graph-Dictionary Signal Model for Sparse Representations of Multivariate Data [49.77103348208835]
グラフの有限集合がラプラシアンの重み付き和を通してデータ分布の関係を特徴付けるグラフ辞書信号モデルを定義する。
本稿では,観測データからグラフ辞書表現を推論するフレームワークを提案する。
我々は,脳活動データに基づく運動画像復号作業におけるグラフ辞書表現を利用して,従来の手法よりも想像的な動きをよりよく分類する。
論文 参考訳(メタデータ) (2024-11-08T17:40:43Z) - GraphLSS: Integrating Lexical, Structural, and Semantic Features for Long Document Extractive Summarization [19.505955857963855]
長い文書抽出要約のための異種グラフ構造であるGraphLSSを提案する。
補助学習モデルを必要としない2種類の情報(単語と文)と4種類のエッジ(文の意味的類似性、文発生順序、文中の単語、単語の意味的類似性)を定義する。
論文 参考訳(メタデータ) (2024-10-25T23:48:59Z) - InstructG2I: Synthesizing Images from Multimodal Attributed Graphs [50.852150521561676]
InstructG2Iと呼ばれるグラフ文脈条件拡散モデルを提案する。
InstructG2Iはまずグラフ構造とマルチモーダル情報を利用して情報的隣人サンプリングを行う。
Graph-QFormerエンコーダは、グラフノードをグラフプロンプトの補助セットに適応的に符号化し、デノナイジングプロセスを導く。
論文 参考訳(メタデータ) (2024-10-09T17:56:15Z) - SPGNN: Recognizing Salient Subgraph Patterns via Enhanced Graph Convolution and Pooling [25.555741218526464]
グラフニューラルネットワーク(GNN)は、グラフやネットワークのような非ユークリッドデータ上での機械学習の分野に革命をもたらした。
本稿では,ノード表現をインジェクティブに更新する結合型グラフ畳み込み機構を提案する。
また,WL-SortPoolと呼ばれるグラフプーリングモジュールを設計し,重要なサブグラフパターンをディープラーニングで学習する。
論文 参考訳(メタデータ) (2024-04-21T13:11:59Z) - GraphMaker: Can Diffusion Models Generate Large Attributed Graphs? [7.330479039715941]
ノード属性を持つ大規模グラフは、様々な現実世界のアプリケーションでますます一般的になっている。
従来のグラフ生成法は、これらの複雑な構造を扱う能力に制限がある。
本稿では,大きな属性グラフを生成するために特別に設計された新しい拡散モデルであるGraphMakerを紹介する。
論文 参考訳(メタデータ) (2023-10-20T22:12:46Z) - Permutation Equivariant Graph Framelets for Heterophilous Graph Learning [6.679929638714752]
本研究では,Haar型グラフフレームレットの構築により,マルチスケール抽出を実現する手法を開発した。
ヘテロ親和性グラフの特定のデータセット上で,我々のモデルが最高の性能を達成できることが示される。
論文 参考訳(メタデータ) (2023-06-07T09:05:56Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - Joint Graph Learning and Matching for Semantic Feature Correspondence [69.71998282148762]
本稿では,グラフマッチングを向上するための信頼度の高いグラフ構造を探索するために,GLAMという共用電子グラフ学習とマッチングネットワークを提案する。
提案手法は,3つの人気ビジュアルマッチングベンチマーク (Pascal VOC, Willow Object, SPair-71k) で評価される。
すべてのベンチマークにおいて、従来の最先端のグラフマッチング手法よりも大きなマージンを達成している。
論文 参考訳(メタデータ) (2021-09-01T08:24:02Z) - Model-Agnostic Graph Regularization for Few-Shot Learning [60.64531995451357]
グラフ組み込み数ショット学習に関する包括的な研究を紹介します。
本稿では,ラベル間のグラフ情報の組み込みによる影響をより深く理解できるグラフ正規化手法を提案する。
提案手法は,Mini-ImageNetで最大2%,ImageNet-FSで6.7%の性能向上を実現する。
論文 参考訳(メタデータ) (2021-02-14T05:28:13Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
本稿では,ノード近接を利用したグラフプーリング手法を提案し,そのマルチホップトポロジを用いたグラフデータの階層的表現学習を改善する。
その結果,提案したグラフプーリング戦略は,公開グラフ分類ベンチマークデータセットの集合において,最先端のパフォーマンスを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-06-19T13:09:44Z) - Deep Graph Mapper: Seeing Graphs through the Neural Lens [4.401427499962144]
我々はMapperとグラフニューラルネットワーク(GNN)の表現力を組み合わせることで、グラフの階層的でトポロジカルな視覚化を生成する。
これらの視覚化は、複雑なグラフの構造を識別するだけでなく、様々なタスクを解くためにそれらに適用されたモデルを理解する手段を提供する。
論文 参考訳(メタデータ) (2020-02-10T15:29:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。