Quantum sampling for the Euclidean path integral of lattice gauge theory
- URL: http://arxiv.org/abs/2201.12556v2
- Date: Wed, 11 May 2022 14:19:21 GMT
- Title: Quantum sampling for the Euclidean path integral of lattice gauge theory
- Authors: Arata Yamamoto
- Abstract summary: We discuss quantum computation of lattice gauge theory in the path integral formalism.
We utilize a quantum sampling algorithm to generate gauge configurations, and demonstrate a benchmark test of $Z$ lattice gauge theory on a four-dimensional hypercube.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although the Hamiltonian formalism is so far favored for quantum computation
of lattice gauge theory, the path integral formalism would never be useless.
The advantages of the path integral formalism are the knowledge and experience
accumulated by classical lattice simulation and manifest Lorentz invariance. We
discuss quantum computation of lattice gauge theory in the path integral
formalism. We utilize a quantum sampling algorithm to generate gauge
configurations, and demonstrate a benchmark test of $Z_2$ lattice gauge theory
on a four-dimensional hypercube.
Related papers
- Quantum Computation of Thermal Averages for a Non-Abelian $D_4$ Lattice
Gauge Theory via Quantum Metropolis Sampling [0.0]
We show the application of the Quantum Metropolis Sampling (QMS) algorithm to a toy gauge theory with discrete non-Abelian gauge group $D_4$ in (2+1)-dimensions.
arXiv Detail & Related papers (2023-09-13T17:05:03Z) - General quantum algorithms for Hamiltonian simulation with applications
to a non-Abelian lattice gauge theory [44.99833362998488]
We introduce quantum algorithms that can efficiently simulate certain classes of interactions consisting of correlated changes in multiple quantum numbers.
The lattice gauge theory studied is the SU(2) gauge theory in 1+1 dimensions coupled to one flavor of staggered fermions.
The algorithms are shown to be applicable to higher-dimensional theories as well as to other Abelian and non-Abelian gauge theories.
arXiv Detail & Related papers (2022-12-28T18:56:25Z) - Entanglement Witnessing for Lattice Gauge Theories [0.0]
Entanglement is assuming a central role in modern quantum many-body physics.
We develop the theoretical framework of entanglement witnessing for lattice gauge theories.
We illustrate the concept at the example of a $mathrmU(1)$ lattice gauge theory in 2+1 dimensions.
arXiv Detail & Related papers (2022-07-01T18:01:21Z) - On Lagrangian Formalism of Quantum Computation [0.0]
We reformulate quantum computation in terms of Lagrangian (sum-over-path) formalism.
The meanings of Lagrangian (action) are interpreted in various contexts of quantum computation.
arXiv Detail & Related papers (2021-12-07T12:24:04Z) - Quantum Simulation of Conformal Field Theory [77.34726150561087]
We describe a quantum algorithm to simulate the dynamics of conformal field theories.
A full analysis of the approximation errors suggests near-term applicability.
arXiv Detail & Related papers (2021-09-29T06:44:33Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum simulation of gauge theory via orbifold lattice [47.28069960496992]
We propose a new framework for simulating $textU(k)$ Yang-Mills theory on a universal quantum computer.
We discuss the application of our constructions to computing static properties and real-time dynamics of Yang-Mills theories.
arXiv Detail & Related papers (2020-11-12T18:49:11Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Search for Efficient Formulations for Hamiltonian Simulation of
non-Abelian Lattice Gauge Theories [0.0]
Hamiltonian formulation of lattice gauge theories (LGTs) is the most natural framework for the purpose of quantum simulation.
It remains an important task to identify the most accurate, while computationally economic, Hamiltonian formulation(s) in such theories.
This paper is a first step toward addressing this question in the case of non-Abelian LGTs.
arXiv Detail & Related papers (2020-09-24T16:44:39Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.