論文の概要: GSN: A Universal Graph Neural Network Inspired by Spring Network
- arxiv url: http://arxiv.org/abs/2201.12994v1
- Date: Mon, 31 Jan 2022 04:15:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-01 15:15:21.141360
- Title: GSN: A Universal Graph Neural Network Inspired by Spring Network
- Title(参考訳): GSN: Spring Networkに触発されたユニバーサルグラフニューラルネットワーク
- Authors: Guanyu Cui, Zhewei Wei
- Abstract要約: グラフスプリングネットワーク(GSN)は,同好性グラフと異好性グラフの両方に対応する汎用GNNモデルである。
GSNフレームワークは,様々な指標を用いたスプリングポテンシャル最小化エネルギーの観点から,既存のGNNモデルの多くを解釈することを示す。
また,実世界の同好および異好のデータセット上で,GSNフレームワークの優れた性能を示すための広範な実験を行った。
- 参考スコア(独自算出の注目度): 14.8308791628821
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The design of universal Graph Neural Networks (GNNs) that operate on both
homophilous and heterophilous graphs has received increased research attention
in recent years. Existing heterophilous GNNs, particularly those designed in
the spatial domain, lack a convincing theoretical or physical motivation. In
this paper, we propose the Graph Spring Network (GSN), a universal GNN model
that works for both homophilous and heterophilous graphs, inspired by spring
networks and metric learning. We show that the GSN framework interprets many
existing GNN models from the perspective of spring potential energy
minimization with various metrics, which gives these models strong physical
motivations. We also conduct extensive experiments to demonstrate our GSN
framework's superior performance on real-world homophilous and heterophilous
data sets.
- Abstract(参考訳): 相同性グラフと相同性グラフの両方で動作する汎用グラフニューラルネットワーク(gnns)の設計は近年研究の注目を集めている。
既存の異種GNN(特に空間領域で設計されたもの)には、理論的、物理的動機がない。
本稿では,同系グラフと異系グラフの両方に対応する汎用gnnモデルであるgraph spring network(gsn)を提案する。
GSNフレームワークは、様々な指標を用いてスプリングポテンシャルエネルギー最小化の観点から、既存のGNNモデルの多くを解釈し、これらのモデルが強い物理的モチベーションをもたらすことを示す。
また,gsnフレームワークが実世界のホモフィリアスおよびヘテロフィリアスデータセットにおいて優れた性能を示すために,広範な実験を行いました。
関連論文リスト
- On the Computational Capability of Graph Neural Networks: A Circuit Complexity Bound Perspective [28.497567290882355]
グラフニューラルネットワーク(GNN)は、リレーショナルデータに対する学習と推論の標準的なアプローチとなっている。
本稿では,回路複雑性のレンズによるGNNの計算限界について検討する。
具体的には、共通GNNアーキテクチャの回路複雑性を分析し、定数層、線形またはサブ線形埋め込みサイズ、精度の制約の下で、GNNはグラフ接続やグラフ同型といった重要な問題を解くことができないことを証明している。
論文 参考訳(メタデータ) (2025-01-11T05:54:10Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
グラフニューラルネットワーク(GNN)は、グラフ構造化データに広く応用されている。
GNNは、大量のテストデータに基づいて推論を行うために、限られた量のトレーニングデータから潜伏パターンを学習する必要がある。
本稿では、GNNのアンサンブル学習を一歩前進させ、精度、堅牢性、敵攻撃を改善した。
論文 参考訳(メタデータ) (2023-03-20T18:24:01Z) - EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural
Networks [51.42338058718487]
グラフニューラルネットワーク(GNN)は、グラフ機械学習における有望なパフォーマンスについて、広範な研究の注目を集めている。
GCNやGPRGNNのような既存のアプローチは、テストグラフ上のホモフィリな変化に直面しても堅牢ではない。
偶数多項式グラフフィルタに対応するスペクトルGNNであるEvenNetを提案する。
論文 参考訳(メタデータ) (2022-05-27T10:48:14Z) - Graph Neural Networks with Local Graph Parameters [1.8600631687568656]
ローカルグラフパラメータは、任意のグラフニューラルネットワーク(GNN)アーキテクチャに追加することができる。
我々の結果は、有限モデル理論と有限変数論理の深い結果とGNNを結びつける。
論文 参考訳(メタデータ) (2021-06-12T07:43:51Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
グラフニューラルネットワーク(GNN)は、関係データ上での表現学習に有効なモデルである。
標準 GNN はその表現力に制限があり、Weisfeiler-Leman グラフ同型(英語版)の能力以外の区別はできない。
本研究では,ランダムノード(RNI)を用いたGNNの表現力の解析を行う。
我々はこれらのモデルが普遍的であることを証明し、GNNが高次特性の計算に頼らない最初の結果である。
論文 参考訳(メタデータ) (2020-10-02T19:53:05Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z) - Expressive Power of Invariant and Equivariant Graph Neural Networks [10.419350129060598]
Folklore Graph Neural Networks (FGNN) は、与えられたテンソル次数に対してこれまで提案されてきた最も表現力のあるアーキテクチャである。
FGNNはこの問題の解決方法を学ぶことができ、既存のアルゴリズムよりも平均的なパフォーマンスが向上する。
論文 参考訳(メタデータ) (2020-06-28T16:35:45Z) - Eigen-GNN: A Graph Structure Preserving Plug-in for GNNs [95.63153473559865]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
既存のGNNモデルの多くは浅く、本質的に機能中心である。
我々は,既存の浅いGNNがグラフ構造をよく保存できないことを経験的かつ解析的に示す。
本稿では,グラフ構造保存におけるGNNの能力を高めるプラグインモジュールであるEigen-GNNを提案する。
論文 参考訳(メタデータ) (2020-06-08T02:47:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。