論文の概要: A deep residual learning implementation of Metamorphosis
- arxiv url: http://arxiv.org/abs/2202.00676v1
- Date: Tue, 1 Feb 2022 15:39:34 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-03 14:21:24.680092
- Title: A deep residual learning implementation of Metamorphosis
- Title(参考訳): 形態変化の深層学習による実装
- Authors: Matthis Maillard, Anton Fran\c{c}ois, Joan Glaun\`es, Isabelle Bloch,
Pietro Gori
- Abstract要約: 本稿では,推論時の計算時間を劇的に削減するメタモルフィズムの残差学習実装を提案する。
また,提案フレームワークは,位相変化の局所化に関する事前知識を容易に統合できることを示す。
提案手法はBraTS 2021データセット上でテストし,脳腫瘍と画像のアライメントにおいて最先端の手法よりも優れていることを示した。
- 参考スコア(独自算出の注目度): 4.4203363069188475
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In medical imaging, most of the image registration methods implicitly assume
a one-to-one correspondence between the source and target images (i.e.,
diffeomorphism). However, this is not necessarily the case when dealing with
pathological medical images (e.g., presence of a tumor, lesion, etc.). To cope
with this issue, the Metamorphosis model has been proposed. It modifies both
the shape and the appearance of an image to deal with the geometrical and
topological differences. However, the high computational time and load have
hampered its applications so far. Here, we propose a deep residual learning
implementation of Metamorphosis that drastically reduces the computational time
at inference. Furthermore, we also show that the proposed framework can easily
integrate prior knowledge of the localization of topological changes (e.g.,
segmentation masks) that can act as spatial regularization to correctly
disentangle appearance and shape changes. We test our method on the BraTS 2021
dataset, showing that it outperforms current state-of-the-art methods in the
alignment of images with brain tumors.
- Abstract(参考訳): 医用画像では、ほとんどの画像登録法は、ソースとターゲット画像(すなわち微分同相)の1対1対応を暗黙的に仮定する。
しかし、病的医療画像(例えば、腫瘍、病変など)を扱う場合、必ずしもそうではない。
この問題に対処するために,変形モデルが提案されている。
幾何学的および位相的差異に対処するために、画像の形状と外観の両方を修飾する。
しかし、高い計算時間と負荷は、これまでその応用を妨げてきた。
本稿では,推論時の計算時間を劇的に削減するメタモルフィズムの残差学習実装を提案する。
さらに,提案手法は,空間的正規化として機能する位相変化(例えばセグメンテーションマスク)の局所化に関する事前知識を容易に統合でき,正確に見栄えや形状変化を区別できることを示した。
提案手法はBraTS 2021データセット上でテストし,脳腫瘍と画像のアライメントにおいて最先端の手法よりも優れていることを示した。
関連論文リスト
- Progressive Retinal Image Registration via Global and Local Deformable Transformations [49.032894312826244]
我々はHybridRetinaと呼ばれるハイブリッド登録フレームワークを提案する。
キーポイント検出器とGAMorphと呼ばれる変形ネットワークを用いて、大域的な変換と局所的な変形可能な変換を推定する。
FIREとFLoRI21という2つの広く使われているデータセットの実験により、提案したHybridRetinaは最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2024-09-02T08:43:50Z) - Advancing Medical Image Segmentation: Morphology-Driven Learning with Diffusion Transformer [4.672688418357066]
本稿では,雑音の存在下での頑健なセグメンテーションのためのトランスフォーマー拡散(DTS)モデルを提案する。
画像の形態的表現を解析する本モデルでは, 種々の医用画像モダリティにおいて, 従来のモデルよりも良好な結果が得られた。
論文 参考訳(メタデータ) (2024-08-01T07:35:54Z) - Adapting Visual-Language Models for Generalizable Anomaly Detection in Medical Images [68.42215385041114]
本稿では,CLIPモデルを用いた医用異常検出のための軽量な多レベル適応と比較フレームワークを提案する。
提案手法では,複数の残像アダプタを事前学習した視覚エンコーダに統合し,視覚的特徴の段階的向上を実現する。
医学的異常検出ベンチマーク実験により,本手法が現在の最先端モデルを大幅に上回っていることが示された。
論文 参考訳(メタデータ) (2024-03-19T09:28:19Z) - Bayesian Unsupervised Disentanglement of Anatomy and Geometry for Deep Groupwise Image Registration [50.62725807357586]
本稿では,マルチモーダル群画像登録のための一般ベイズ学習フレームワークを提案する。
本稿では,潜在変数の推論手順を実現するために,新しい階層的変分自動符号化アーキテクチャを提案する。
心臓、脳、腹部の医療画像から4つの異なるデータセットを含む,提案された枠組みを検証する実験を行った。
論文 参考訳(メタデータ) (2024-01-04T08:46:39Z) - MetaRegNet: Metamorphic Image Registration Using Flow-Driven Residual
Networks [5.781678712645597]
本稿では,時間変動流を用いた深部メタモルフィック画像登録ネットワーク(MetaRegNet)を提案する。
そこで我々はMetaRegNetを脳腫瘍のBraTS 2021と肝腫瘍の3D-IRCADb-01の2つのデータセットで評価した。
論文 参考訳(メタデータ) (2023-03-16T05:24:13Z) - MetaMorph: Learning Metamorphic Image Transformation With Appearance
Changes [7.248454903977972]
外観変化を伴う画像の登録のための新しい予測モデルMetaMorph(脳腫瘍による画像の登録)を提案する。
本モデルでは, 外観変化領域の負の効果を効果的に抑制できる新しい正規化を導入する。
実際のヒト脳腫瘍MRI画像におけるMetaMorphの有用性について検討した。
論文 参考訳(メタデータ) (2023-03-08T19:30:58Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
本稿では,正常脳解剖のパッチベース推定法として拡散モデルの生成タスクを再構築する手法を提案する。
腫瘍と多発性硬化症について検討し,既存のベースラインと比較して25.1%の改善がみられた。
論文 参考訳(メタデータ) (2023-03-07T09:40:22Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
DiffuseMorphと呼ばれる拡散モデルに基づく新しい確率的画像登録手法を提案する。
本モデルは,動画像と固定画像の変形のスコア関数を学習する。
本手法は, トポロジー保存機能により, 柔軟かつ高精度な変形を可能とする。
論文 参考訳(メタデータ) (2021-12-09T08:41:23Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
本稿では, 自動文脈戦略を用いて変形場を段階的に洗練する幼児向け深層登録ネットワークを提案する。
本手法は, 繰り返し変形改善のために1つのネットワークを複数回呼び出すことにより, 変形場を推定する。
現状登録法との比較実験の結果, 変形場の滑らかさを保ちながら, 高い精度を達成できることが示唆された。
論文 参考訳(メタデータ) (2020-05-19T06:00:13Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
本稿では,幾何学と形状の内在的関係を共同で符号化することで,従来のGANベースの医用画像合成法よりも優れた手法を提案する。
提案手法は,取得手順の異なる画像を有する公開RETOUCHデータセット上で,最先端のセグメンテーション手法より優れている。
論文 参考訳(メタデータ) (2020-03-31T11:50:43Z) - Fast Symmetric Diffeomorphic Image Registration with Convolutional
Neural Networks [11.4219428942199]
本稿では,新しい非教師付き対称画像登録手法を提案する。
大規模脳画像データセットを用いた3次元画像登録法について検討した。
論文 参考訳(メタデータ) (2020-03-20T22:07:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。