Dictionary learning for clustering on hyperspectral images
- URL: http://arxiv.org/abs/2202.00990v1
- Date: Wed, 2 Feb 2022 12:22:33 GMT
- Title: Dictionary learning for clustering on hyperspectral images
- Authors: Joshua Bruton and Hairong Wang
- Abstract summary: We propose a method for clustering the pixels of hyperspectral images using sparse coefficients computed from a representative dictionary as features.
We show empirically that the proposed method works more effectively than clustering on the original pixels.
- Score: 0.5584060970507506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Dictionary learning and sparse coding have been widely studied as mechanisms
for unsupervised feature learning. Unsupervised learning could bring enormous
benefit to the processing of hyperspectral images and to other remote sensing
data analysis because labelled data are often scarce in this field. We propose
a method for clustering the pixels of hyperspectral images using sparse
coefficients computed from a representative dictionary as features. We show
empirically that the proposed method works more effectively than clustering on
the original pixels. We also demonstrate that our approach, in certain
circumstances, outperforms the clustering results of features extracted using
principal component analysis and non-negative matrix factorisation.
Furthermore, our method is suitable for applications in repetitively clustering
an ever-growing amount of high-dimensional data, which is the case when working
with hyperspectral satellite imagery.
Related papers
- Neural Clustering based Visual Representation Learning [61.72646814537163]
Clustering is one of the most classic approaches in machine learning and data analysis.
We propose feature extraction with clustering (FEC), which views feature extraction as a process of selecting representatives from data.
FEC alternates between grouping pixels into individual clusters to abstract representatives and updating the deep features of pixels with current representatives.
arXiv Detail & Related papers (2024-03-26T06:04:50Z) - A consensus-constrained parsimonious Gaussian mixture model for
clustering hyperspectral images [0.0]
Food engineers use hyperspectral images to classify the type and quality of a food sample.
In order to train these methods, every pixel in each training image needs to be labelled.
A consensus-constrained parsimonious Gaussian mixture model (ccPGMM) is proposed to label pixels in hyperspectral images.
arXiv Detail & Related papers (2024-03-05T22:23:43Z) - Superpixel Graph Contrastive Clustering with Semantic-Invariant
Augmentations for Hyperspectral Images [64.72242126879503]
Hyperspectral images (HSI) clustering is an important but challenging task.
We first use 3-D and 2-D hybrid convolutional neural networks to extract the high-order spatial and spectral features of HSI.
We then design a superpixel graph contrastive clustering model to learn discriminative superpixel representations.
arXiv Detail & Related papers (2024-03-04T07:40:55Z) - Learning A Disentangling Representation For PU Learning [18.94726971543125]
We propose to learn a neural network-based data representation using a loss function that can be used to project the unlabeled data into two clusters.
We conduct experiments on simulated PU data that demonstrate the improved performance of our proposed method compared to the current state-of-the-art approaches.
arXiv Detail & Related papers (2023-10-05T18:33:32Z) - Convolutional autoencoder-based multimodal one-class classification [80.52334952912808]
One-class classification refers to approaches of learning using data from a single class only.
We propose a deep learning one-class classification method suitable for multimodal data.
arXiv Detail & Related papers (2023-09-25T12:31:18Z) - Large-Scale Hyperspectral Image Clustering Using Contrastive Learning [18.473767002905433]
We present a scalable deep online clustering model, named Spectral-Spatial Contrastive Clustering (SSCC)
We exploit a symmetric twin neural network comprised of a projection head with a dimensionality of the cluster number to conduct dual contrastive learning from a spectral-spatial augmentation pool.
The resulting approach is trained in an end-to-end fashion by batch-wise optimization, making it robust in large-scale data and resulting in good generalization ability for unseen data.
arXiv Detail & Related papers (2021-11-15T17:50:06Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Clustering by Maximizing Mutual Information Across Views [62.21716612888669]
We propose a novel framework for image clustering that incorporates joint representation learning and clustering.
Our method significantly outperforms state-of-the-art single-stage clustering methods across a variety of image datasets.
arXiv Detail & Related papers (2021-07-24T15:36:49Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
It is advantageous to visualize the features considered to be essential for classification.
Existing visualization methods develop high confidence images consisting of both background and foreground features.
In this work, we propose a saliency-driven approach to visualize discriminative features that are considered most important for a given task.
arXiv Detail & Related papers (2020-07-31T06:11:06Z) - Unsupervised Learning of Visual Features by Contrasting Cluster
Assignments [57.33699905852397]
We propose an online algorithm, SwAV, that takes advantage of contrastive methods without requiring to compute pairwise comparisons.
Our method simultaneously clusters the data while enforcing consistency between cluster assignments.
Our method can be trained with large and small batches and can scale to unlimited amounts of data.
arXiv Detail & Related papers (2020-06-17T14:00:42Z) - Contrast-weighted Dictionary Learning Based Saliency Detection for
Remote Sensing Images [3.338193485961624]
We propose a novel saliency detection model based on Contrast-weighted Dictionary Learning (CDL) for remote sensing images.
Specifically, the proposed CDL learns salient and non-salient atoms from positive and negative samples to construct a discriminant dictionary.
By using the proposed joint saliency measure, a variety of saliency maps are generated based on the discriminant dictionary.
arXiv Detail & Related papers (2020-04-06T06:49:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.