Causal Inference Through the Structural Causal Marginal Problem
- URL: http://arxiv.org/abs/2202.01300v2
- Date: Fri, 4 Feb 2022 13:48:55 GMT
- Title: Causal Inference Through the Structural Causal Marginal Problem
- Authors: Luigi Gresele, Julius von K\"ugelgen, Jonas M. K\"ubler, Elke
Kirschbaum, Bernhard Sch\"olkopf, Dominik Janzing
- Abstract summary: We introduce an approach to counterfactual inference based on merging information from multiple datasets.
We formalise this approach for categorical SCMs using the response function formulation and show that it reduces the space of allowed marginal and joint SCMs.
- Score: 17.91174054672512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce an approach to counterfactual inference based on merging
information from multiple datasets. We consider a causal reformulation of the
statistical marginal problem: given a collection of marginal structural causal
models (SCMs) over distinct but overlapping sets of variables, determine the
set of joint SCMs that are counterfactually consistent with the marginal ones.
We formalise this approach for categorical SCMs using the response function
formulation and show that it reduces the space of allowed marginal and joint
SCMs. Our work thus highlights a new mode of falsifiability through additional
variables, in contrast to the statistical one via additional data.
Related papers
- Induced Covariance for Causal Discovery in Linear Sparse Structures [55.2480439325792]
Causal models seek to unravel the cause-effect relationships among variables from observed data.
This paper introduces a novel causal discovery algorithm designed for settings in which variables exhibit linearly sparse relationships.
arXiv Detail & Related papers (2024-10-02T04:01:38Z) - iSCAN: Identifying Causal Mechanism Shifts among Nonlinear Additive
Noise Models [48.33685559041322]
This paper focuses on identifying the causal mechanism shifts in two or more related datasets over the same set of variables.
Code implementing the proposed method is open-source and publicly available at https://github.com/kevinsbello/iSCAN.
arXiv Detail & Related papers (2023-06-30T01:48:11Z) - Bounding probabilities of causation through the causal marginal problem [12.542533707005092]
Probabilities of causation play a fundamental role in decision making in law, health care and public policy.
In many clinical trials and public policy evaluation cases, there exist independent datasets that examine the effect of a different treatment each on the same outcome variable.
Here, we outline how to significantly tighten existing bounds on the probabilities of causation, by imposing counterfactual consistency between SCMs constructed from such independent datasets.
arXiv Detail & Related papers (2023-04-04T12:16:38Z) - Learning Latent Structural Causal Models [31.686049664958457]
In machine learning tasks, one often operates on low-level data like image pixels or high-dimensional vectors.
We present a tractable approximate inference method which performs joint inference over the causal variables, structure and parameters of the latent Structural Causal Model.
arXiv Detail & Related papers (2022-10-24T20:09:44Z) - Disentanglement and Generalization Under Correlation Shifts [22.499106910581958]
Correlations between factors of variation are prevalent in real-world data.
Machine learning algorithms may benefit from exploiting such correlations, as they can increase predictive performance on noisy data.
We aim to learn representations which capture different factors of variation in latent subspaces.
arXiv Detail & Related papers (2021-12-29T18:55:17Z) - Partial Counterfactual Identification from Observational and
Experimental Data [83.798237968683]
We develop effective Monte Carlo algorithms to approximate the optimal bounds from an arbitrary combination of observational and experimental data.
Our algorithms are validated extensively on synthetic and real-world datasets.
arXiv Detail & Related papers (2021-10-12T02:21:30Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
This paper investigates the problem of learning robust, generalizable prediction models from a combination of datasets.
Part of the challenge of learning robust models lies in the influence of unobserved confounders.
We demonstrate the empirical performance of our approach on healthcare data from different modalities.
arXiv Detail & Related papers (2020-07-21T08:18:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.