論文の概要: A Comparison of Online Hate on Reddit and 4chan: A Case Study of the
2020 US Election
- arxiv url: http://arxiv.org/abs/2202.01302v1
- Date: Wed, 2 Feb 2022 21:48:56 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-04 13:34:18.452389
- Title: A Comparison of Online Hate on Reddit and 4chan: A Case Study of the
2020 US Election
- Title(参考訳): Redditと4chanのオンラインヘイト比較:2020年米国大統領選挙を事例として
- Authors: Fatima Zahrah and Jason R. C. Nurse and Michael Goldsmith
- Abstract要約: 我々は、2020年の米大統領選挙に関するRedditと4chanのヘイトなコンテンツを分析するために、さまざまな自然言語処理(NLP)技術を活用しています。
以上の結果から,コンテンツと投稿活動がプラットフォームによってどのように異なるかが示唆された。
我々は、オンライン憎悪のプラットフォーム固有の行動と、異なるプラットフォームが特定の目的を達成する方法について、最初の比較を行った。
- 参考スコア(独自算出の注目度): 2.685668802278155
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The rapid integration of the Internet into our daily lives has led to many
benefits but also to a number of new, wide-spread threats such as online hate,
trolling, bullying, and generally aggressive behaviours. While research has
traditionally explored online hate, in particular, on one platform, the reality
is that such hate is a phenomenon that often makes use of multiple online
networks. In this article, we seek to advance the discussion into online hate
by harnessing a comparative approach, where we make use of various Natural
Language Processing (NLP) techniques to computationally analyse hateful content
from Reddit and 4chan relating to the 2020 US Presidential Elections. Our
findings show how content and posting activity can differ depending on the
platform being used. Through this, we provide initial comparison into the
platform-specific behaviours of online hate, and how different platforms can
serve specific purposes. We further provide several avenues for future research
utilising a cross-platform approach so as to gain a more comprehensive
understanding of the global hate ecosystem.
- Abstract(参考訳): 日々の生活にインターネットが急速に統合され、多くのメリットがもたらされただけでなく、オンラインヘイト、トロール、いじめ、そして全般的な攻撃的な行動など、多くの新しい幅広い脅威にも繋がった。
研究は伝統的に1つのプラットフォームでオンライン憎悪を調査してきたが、現実には、そのような憎悪はしばしば複数のオンラインネットワークを利用する現象である。
本稿では,さまざまな自然言語処理(NLP)技術を用いて,2020年アメリカ合衆国大統領選挙に関するRedditと4chanのヘイトフルコンテンツを計算的に分析する。
本研究は,コンテンツと投稿活動がプラットフォームによってどのように異なるかを示す。
これを通じて、オンライン憎悪のプラットフォーム固有の行動と、異なるプラットフォームが特定の目的を達成する方法について、最初の比較を行う。
我々はさらに,世界的ヘイトエコシステムをより包括的に理解するために,クロスプラットフォームアプローチを活用した今後の研究のために,いくつかの手段を提供する。
関連論文リスト
- Analyzing Norm Violations in Live-Stream Chat [49.120561596550395]
本研究は,ライブストリーミングプラットフォーム上での会話における規範違反を検出することを目的とした,最初のNLP研究である。
ライブストリームチャットにおける標準違反カテゴリを定義し、Twitchから4,583のコメントを注釈付けします。
以上の結果から,適切なコンテキスト情報がモデレーション性能を35%向上させる可能性が示唆された。
論文 参考訳(メタデータ) (2023-05-18T05:58:27Z) - Hatemongers ride on echo chambers to escalate hate speech diffusion [23.714548893849393]
我々は3つの人気オンラインソーシャルネットワークで680万以上のユーザーから3200万以上の投稿を分析している。
ヘイトモンガーは、単独のヘイトフルコンテンツに比べて情報の拡散を管理する上で、より重要な役割を担っている。
論文 参考訳(メタデータ) (2023-02-05T20:30:48Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
ツイストとカモフラージュキーワードは、プラットフォームコンテンツモデレーションシステムを回避する最もよく使われるテクニックである。
本稿では,コンテンツ回避の新たな手法をシミュレートし,検出する多言語ツールを開発することにより,悪意ある情報に対する対処に大きく貢献する。
論文 参考訳(メタデータ) (2022-12-27T16:08:49Z) - CRUSH: Contextually Regularized and User anchored Self-supervised Hate
speech Detection [6.759148939470331]
CRUSHは,ユーザが選択した自己スーパービジョンと文脈正規化を用いたヘイトスピーチ検出のためのフレームワークである。
提案手法は,2種類のタスクと複数のポピュラーなソーシャルメディアデータセットに対して,過去のアプローチよりも1~12%向上する。
論文 参考訳(メタデータ) (2022-04-13T13:51:51Z) - Hate Speech Classification Using SVM and Naive BAYES [0.0]
多くの国は、オンラインヘイトスピーチを避けるための法律を開発した。
しかし、オンラインコンテンツが成長を続けるにつれ、ヘイトスピーチが広まる。
ヘイトスピーチを検出して削除するために、オンラインユーザーコンテンツを自動的に処理することが重要である。
論文 参考訳(メタデータ) (2022-03-21T17:15:38Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Detecting Harmful Content On Online Platforms: What Platforms Need Vs.
Where Research Efforts Go [44.774035806004214]
オンラインプラットフォーム上の有害コンテンツには、ヘイトスピーチ、攻撃的言語、いじめとハラスメント、誤情報、スパム、暴力、グラフィックコンテンツ、性的虐待、自己被害など、さまざまな形態がある。
オンラインプラットフォームは、そのようなコンテンツを、社会的危害を抑えるため、法律に従うために、ユーザーのためにより包括的な環境を作るために、緩和しようとしている。
現在、オンラインプラットフォームが抑制しようとしている有害なコンテンツの種類と、そのようなコンテンツを自動的に検出する研究努力との間には、隔たりがある。
論文 参考訳(メタデータ) (2021-02-27T08:01:10Z) - Leveraging cross-platform data to improve automated hate speech
detection [0.0]
ヘイトスピーチ検出のための既存のアプローチは、単一のソーシャルメディアプラットフォームを独立して重視している。
本稿では,異なるプラットフォームからの複数のデータセットと分類モデルを活用するヘイトスピーチを検出するための,クロスプラットフォームアプローチを提案する。
このアプローチが既存のモデルより優れていることを実証し、新しいソーシャルメディアプラットフォームからのメッセージでテストすると、優れたパフォーマンスが得られることを示す。
論文 参考訳(メタデータ) (2021-02-09T15:52:34Z) - Echo Chambers on Social Media: A comparative analysis [64.2256216637683]
本研究では,4つのソーシャルメディアプラットフォーム上で100万ユーザが生成した100万個のコンテンツに対して,エコーチャンバーの操作的定義を導入し,大規模な比較分析を行う。
議論の的になっているトピックについてユーザの傾きを推測し、異なる特徴を分析してインタラクションネットワークを再構築する。
我々は、Facebookのようなニュースフィードアルゴリズムを実装するプラットフォームが、エコーチャンバの出現を招きかねないという仮説を支持する。
論文 参考訳(メタデータ) (2020-04-20T20:00:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。