An Artificial Intelligence Dataset for Solar Energy Locations in India
- URL: http://arxiv.org/abs/2202.01340v1
- Date: Mon, 31 Jan 2022 23:53:19 GMT
- Title: An Artificial Intelligence Dataset for Solar Energy Locations in India
- Authors: Anthony Ortiz, Dhaval Negandhi, Sagar R Mysorekar, Joseph Kiesecker,
Shivaprakash K Nagaraju, Caleb Robinson, Priyal Bhatia, Aditi Khurana, Jane
Wang, Felipe Oviedo, Juan Lavista Ferres
- Abstract summary: India has set ambitious goals to install 300 gigawatts of solar energy capacity by 2030.
Land use planners will need access to up-to-date and accurate geo-spatial information of PV infrastructure.
We develop a spatially explicit machine learning model to map utility-scale solar projects across India.
- Score: 6.454602468926006
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rapid development of renewable energy sources, particularly solar
photovoltaics, is critical to mitigate climate change. As a result, India has
set ambitious goals to install 300 gigawatts of solar energy capacity by 2030.
Given the large footprint projected to meet these renewable energy targets the
potential for land use conflicts over environmental and social values is high.
To expedite development of solar energy, land use planners will need access to
up-to-date and accurate geo-spatial information of PV infrastructure. The
majority of recent studies use either predictions of resource suitability or
databases that are either developed thru crowdsourcing that often have
significant sampling biases or have time lags between when projects are
permitted and when location data becomes available. Here, we address this
shortcoming by developing a spatially explicit machine learning model to map
utility-scale solar projects across India. Using these outputs, we provide a
cumulative measure of the solar footprint across India and quantified the
degree of land modification associated with land cover types that may cause
conflicts. Our analysis indicates that over 74\% of solar development In India
was built on landcover types that have natural ecosystem preservation, and
agricultural values. Thus, with a mean accuracy of 92\% this method permits the
identification of the factors driving land suitability for solar projects and
will be of widespread interest for studies seeking to assess trade-offs
associated with the global decarbonization of green-energy systems. In the same
way, our model increases the feasibility of remote sensing and long-term
monitoring of renewable energy deployment targets.
Related papers
- GlobalBuildingMap -- Unveiling the Mystery of Global Buildings [16.01396565010977]
We created the highest resolution and highest accuracy building map ever created: the GlobalBuildingMap (GBM)
A joint analysis of building maps and solar potentials indicates that rooftop solar energy can supply the global energy consumption need at a reasonable cost.
We also identified a clear geospatial correlation between building areas and key socioeconomic variables.
arXiv Detail & Related papers (2024-04-22T06:43:18Z) - GloSoFarID: Global multispectral dataset for Solar Farm IDentification in satellite imagery [1.2021565114959365]
This study develops the first comprehensive global dataset of multispectral satellite imagery of solar panel farms.
It is intended to form the basis for training robust machine learning models, which can accurately map and analyze the expansion and distribution of solar panel farms globally.
arXiv Detail & Related papers (2024-04-08T04:10:50Z) - SatBird: Bird Species Distribution Modeling with Remote Sensing and
Citizen Science Data [68.2366021016172]
We present SatBird, a satellite dataset of locations in the USA with labels derived from presence-absence observation data from the citizen science database eBird.
We also provide a dataset in Kenya representing low-data regimes.
We benchmark a set of baselines on our dataset, including SOTA models for remote sensing tasks.
arXiv Detail & Related papers (2023-11-02T02:00:27Z) - On the Opportunities of Green Computing: A Survey [80.21955522431168]
Artificial Intelligence (AI) has achieved significant advancements in technology and research with the development over several decades.
The needs for high computing power brings higher carbon emission and undermines research fairness.
To tackle the challenges of computing resources and environmental impact of AI, Green Computing has become a hot research topic.
arXiv Detail & Related papers (2023-11-01T11:16:41Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
Energy forecasting aims to minimize the cost of subsequent tasks such as power grid dispatch.
In this paper, we collected large-scale load datasets and released a new renewable energy dataset.
We conducted extensive experiments with 21 forecasting methods in these energy datasets at different levels under 11 evaluation metrics.
arXiv Detail & Related papers (2023-07-14T06:50:02Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - Location-aware green energy availability forecasting for multiple time
frames in smart buildings: The case of Estonia [0.5156484100374058]
This research aims to forecast PV system output power based on weather and derived features using different machine learning models.
The objective is to obtain the best-fitting model to precisely predict output power by inspecting the data.
arXiv Detail & Related papers (2022-10-04T14:02:43Z) - SunCast: Solar Irradiance Nowcasting from Geosynchronous Satellite Data [2.285928372124628]
We propose a Convolutional Long Short-Term Memory Network model that treats solar nowcasting as a next frame prediction problem.
Our models can predict solar irradiance for entire North America for up to 3 hours in under 60 seconds on a single machine without a GPU.
arXiv Detail & Related papers (2022-01-17T01:55:26Z) - HyperionSolarNet: Solar Panel Detection from Aerial Images [0.7157957528875099]
We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery.
Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.
arXiv Detail & Related papers (2022-01-06T15:43:13Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
Farm parcel delineation provides cadastral data that is important in developing and managing climate change policies.
This data can also be useful for the agricultural insurance sector for assessing compensations following damages associated with extreme weather events.
Using satellite imaging can be a scalable and cost effective manner to perform the task of farm parcel delineation.
arXiv Detail & Related papers (2020-04-11T19:49:09Z) - Towards a Peer-to-Peer Energy Market: an Overview [68.8204255655161]
This work focuses on the electric power market, comparing the status quo with the recent trend towards the increase in distributed self-generation capabilities by prosumers.
We introduce a potential multi-layered architecture for a Peer-to-Peer (P2P) energy market, discussing the fundamental aspects of local production and local consumption as part of a microgrid.
To give a full picture to the reader, we also scrutinise relevant elements of energy trading, such as Smart Contract and grid stability.
arXiv Detail & Related papers (2020-03-02T20:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.