論文の概要: Deep Surface Reconstruction from Point Clouds with Visibility
Information
- arxiv url: http://arxiv.org/abs/2202.01810v1
- Date: Thu, 3 Feb 2022 19:33:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 03:09:53.881525
- Title: Deep Surface Reconstruction from Point Clouds with Visibility
Information
- Title(参考訳): 視認情報付き点雲からの深部表層復元
- Authors: Raphael Sulzer, Loic Landrieu, Alexandre Boulch, Renaud Marlet, Bruno
Vallet
- Abstract要約: 視認性情報により生点雲を増大させる2つの簡単な方法を提案する。
提案手法は, 生成面の精度を向上するとともに, ネットワークの形状領域に対する一般化能力も向上する。
- 参考スコア(独自算出の注目度): 66.05024551590812
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Most current neural networks for reconstructing surfaces from point clouds
ignore sensor poses and only operate on raw point locations. Sensor visibility,
however, holds meaningful information regarding space occupancy and surface
orientation. In this paper, we present two simple ways to augment raw point
clouds with visibility information, so it can directly be leveraged by surface
reconstruction networks with minimal adaptation. Our proposed modifications
consistently improve the accuracy of generated surfaces as well as the
generalization ability of the networks to unseen shape domains. Our code and
data is available at https://github.com/raphaelsulzer/dsrv-data.
- Abstract(参考訳): 点雲から表面を再構築する現在のニューラルネットワークは、センサーのポーズを無視し、生の地点でのみ動作する。
しかし、センサーの可視性は、空間占有率と表面配向に関する有意義な情報を保持する。
本稿では,視認性情報を用いて生点雲を補強する2つの簡単な方法を提案する。
提案手法は, 生成面の精度を向上するとともに, ネットワークの形状領域に対する一般化能力も向上する。
私たちのコードとデータはhttps://github.com/raphaelsulzer/dsrv-dataで入手できます。
関連論文リスト
- Unsupervised Inference of Signed Distance Functions from Single Sparse
Point Clouds without Learning Priors [54.966603013209685]
3次元点雲から符号付き距離関数(SDF)を推測することは不可欠である。
単一スパース点雲から直接SDFを推定するニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-03-25T15:56:50Z) - Parametric Surface Constrained Upsampler Network for Point Cloud [33.033469444588086]
バイコビック関数と回転関数で表されるパラメトリック曲面をニューラルネットワークに学習させ,新しいサーフェス正規化器をアップサンプラーネットワークに導入する。
これらの設計は、2つの異なるネットワークに統合され、レイヤのアップサンプリングの利点を生かしている。
両課題の最先端実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2023-03-14T21:12:54Z) - Semi-signed neural fitting for surface reconstruction from unoriented
point clouds [53.379712818791894]
より優れた符号付き距離場を再構成するためのSN-Fittingを提案する。
SSNフィッティングは半署名の監督と損失に基づく領域サンプリング戦略で構成されている。
我々は,SSN-Fittingが,異なる設定下で最先端の性能を達成することを示す実験を行う。
論文 参考訳(メタデータ) (2022-06-14T09:40:17Z) - Reconstructing Surfaces for Sparse Point Clouds with On-Surface Priors [52.25114448281418]
現在の方法では、接地距離や点正規化なしに単一点雲から符号付き距離関数 (Signed Distance Function, SDF) を学習することで、表面を再構築することができる。
そこで本稿では, 表面上の粗い点雲から高精度な表面を復元することを提案する。
本手法は, 接地距離や点正規化を伴わずに, 単一のスパース点雲からSDFを学習することができる。
論文 参考訳(メタデータ) (2022-04-22T09:45:20Z) - Deep Point Cloud Reconstruction [74.694733918351]
3Dスキャンから得られる点雲は、しばしばスパース、ノイズ、不規則である。
これらの問題に対処するため、最近の研究は別々に行われ、不正確な点雲を密度化、復調し、完全な不正確な点雲を観測している。
本研究では,1) 初期密度化とデノナイズのための3次元スパース集積時間ガラスネットワーク,2) 離散ボクセルを3Dポイントに変換するトランスフォーマーによる改良,の2段階からなる深部点雲再構成ネットワークを提案する。
論文 参考訳(メタデータ) (2021-11-23T07:53:28Z) - RfD-Net: Point Scene Understanding by Semantic Instance Reconstruction [19.535169371240073]
本稿では,高密度物体表面を直接点雲から検出・再構成するRfD-Netを提案する。
インスタンス再構成を大域的オブジェクトローカライゼーションと局所形状予測に分離する。
我々のアプローチは、オブジェクト再構成において、最先端の技術を一貫して上回り、メッシュIoUの11以上を改善します。
論文 参考訳(メタデータ) (2020-11-30T12:58:05Z) - Deep Positional and Relational Feature Learning for Rotation-Invariant
Point Cloud Analysis [107.9979381402172]
点雲解析のための回転不変深層ネットワークを提案する。
ネットワークは階層的であり、位置的特徴埋め込みブロックと関係的特徴埋め込みブロックという2つのモジュールに依存している。
実験では、ベンチマークデータセット上で最先端の分類とセグメンテーション性能を示す。
論文 参考訳(メタデータ) (2020-11-18T04:16:51Z) - Meshing Point Clouds with Predicted Intrinsic-Extrinsic Ratio Guidance [30.863194319818223]
既存のポイントへの接続情報のみを付加することで、インプットポイントクラウドを可能な限り活用することを提案する。
私たちの重要なイノベーションはローカル接続のサロゲートであり、本質的/外生的メトリクスを比較して計算します。
提案手法は, 詳細を保存できるだけでなく, あいまいな構造を扱えるだけでなく, 目に見えないカテゴリに対して強い一般化性を持つことを示す。
論文 参考訳(メタデータ) (2020-07-17T22:36:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。