Generalizing to New Physical Systems via Context-Informed Dynamics Model
- URL: http://arxiv.org/abs/2202.01889v1
- Date: Tue, 1 Feb 2022 07:41:10 GMT
- Title: Generalizing to New Physical Systems via Context-Informed Dynamics Model
- Authors: Matthieu Kirchmeyer (MLIA), Yuan Yin (MLIA), J\'er\'emie Don\`a
(MLIA), Nicolas Baskiotis (MLIA), Alain Rakotomamonjy (LITIS), Patrick
Gallinari (MLIA)
- Abstract summary: We propose a new framework for context-informed dynamics adaptation (CoDA)
CoDA learns to condition the dynamics model on contextual parameters, specific to each environment.
We show state-ofthe-art generalization results on a set of nonlinear dynamics, representative of a variety of application domains.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven approaches to modeling physical systems fail to generalize to
unseen systems that share the same general dynamics with the learning domain,
but correspond to different physical contexts. We propose a new framework for
this key problem, context-informed dynamics adaptation (CoDA), which takes into
account the distributional shift across systems for fast and efficient
adaptation to new dynamics. CoDA leverages multiple environments, each
associated to a different dynamic, and learns to condition the dynamics model
on contextual parameters, specific to each environment. The conditioning is
performed via a hypernetwork, learned jointly with a context vector from
observed data. The proposed formulation constrains the search hypothesis space
to foster fast adaptation and better generalization across environments. It
extends the expressivity of existing methods. We theoretically motivate our
approach and show state-ofthe-art generalization results on a set of nonlinear
dynamics, representative of a variety of application domains. We also show, on
these systems, that new system parameters can be inferred from context vectors
with minimal supervision.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Data-driven Influence Based Clustering of Dynamical Systems [0.0]
Community detection is a challenging and relevant problem in various disciplines of science and engineering.
We propose a novel approach for clustering dynamical systems purely from time-series data.
We illustrate the efficacy of the proposed approach by clustering three different dynamical systems.
arXiv Detail & Related papers (2022-04-05T17:26:47Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
Data-driven modeling is an alternative paradigm that seeks to learn an approximation of the dynamics of a system using observations of the true system.
This paper provides a survey of the different ways to construct models of dynamical systems using neural networks.
In addition to the basic overview, we review the related literature and outline the most significant challenges from numerical simulations that this modeling paradigm must overcome.
arXiv Detail & Related papers (2021-11-02T10:51:42Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - LEADS: Learning Dynamical Systems that Generalize Across Environments [12.024388048406587]
We propose LEADS, a novel framework that leverages the commonalities and discrepancies among known environments to improve model generalization.
We show that this new setting can exploit knowledge extracted from environment-dependent data and improves generalization for both known and novel environments.
arXiv Detail & Related papers (2021-06-08T17:28:19Z) - Explore the Context: Optimal Data Collection for Context-Conditional Dynamics Models [7.766117084613689]
We learn dynamics models for parametrized families of dynamical systems with varying properties.
We compute an action sequence which, for a limited number of environment interactions, optimally explores the given system.
We demonstrate the effectiveness of our method for exploration on a non-linear toy-problem and two well-known reinforcement learning environments.
arXiv Detail & Related papers (2021-02-22T22:52:39Z) - Trajectory-wise Multiple Choice Learning for Dynamics Generalization in
Reinforcement Learning [137.39196753245105]
We present a new model-based reinforcement learning algorithm that learns a multi-headed dynamics model for dynamics generalization.
We incorporate context learning, which encodes dynamics-specific information from past experiences into the context latent vector.
Our method exhibits superior zero-shot generalization performance across a variety of control tasks, compared to state-of-the-art RL methods.
arXiv Detail & Related papers (2020-10-26T03:20:42Z) - Context-aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning [124.9856253431878]
We decompose the task of learning a global dynamics model into two stages: (a) learning a context latent vector that captures the local dynamics, then (b) predicting the next state conditioned on it.
In order to encode dynamics-specific information into the context latent vector, we introduce a novel loss function that encourages the context latent vector to be useful for predicting both forward and backward dynamics.
The proposed method achieves superior generalization ability across various simulated robotics and control tasks, compared to existing RL schemes.
arXiv Detail & Related papers (2020-05-14T08:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.