論文の概要: 5G Network on Wings: A Deep Reinforcement Learning Approach to UAV-based
Integrated Access and Backhaul
- arxiv url: http://arxiv.org/abs/2202.02006v1
- Date: Fri, 4 Feb 2022 07:45:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-07 23:17:17.289174
- Title: 5G Network on Wings: A Deep Reinforcement Learning Approach to UAV-based
Integrated Access and Backhaul
- Title(参考訳): wing上の5gネットワーク:uavベースの統合アクセスとバックホールへの深い強化学習アプローチ
- Authors: Hongyi Zhang, Jingya Li, Zhiqiang Qi, Xingqin Lin, Anders Aronsson,
Jan Bosch, Helena Holmstr\"om Olsson
- Abstract要約: 無人航空機(UAV)ベースの航空ネットワークは、高速で柔軟で信頼性の高い無線通信のための有望な代替手段を提供する。
本稿では,データ収集システム,シグナリング手順,機械学習の応用について述べる。
- 参考スコア(独自算出の注目度): 11.457210142796914
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fast and reliable wireless communication has become a critical demand in
human life. When natural disasters strike, providing ubiquitous connectivity
becomes challenging by using traditional wireless networks. In this context,
unmanned aerial vehicle (UAV) based aerial networks offer a promising
alternative for fast, flexible, and reliable wireless communications in
mission-critical (MC) scenarios. Due to the unique characteristics such as
mobility, flexible deployment, and rapid reconfiguration, drones can readily
change location dynamically to provide on-demand communications to users on the
ground in emergency scenarios. As a result, the usage of UAV base stations
(UAV-BSs) has been considered as an appropriate approach for providing rapid
connection in MC scenarios. In this paper, we study how to control a UAV-BS in
both static and dynamic environments. We investigate a situation in which a
macro BS is destroyed as a result of a natural disaster and a UAV-BS is
deployed using integrated access and backhaul (IAB) technology to provide
coverage for users in the disaster area. We present a data collection system,
signaling procedures and machine learning applications for this use case. A
deep reinforcement learning algorithm is developed to jointly optimize the tilt
of the access and backhaul antennas of the UAV-BS as well as its
three-dimensional placement. Evaluation results show that the proposed
algorithm can autonomously navigate and configure the UAV-BS to satisfactorily
serve the MC users on the ground.
- Abstract(参考訳): 高速で信頼性の高い無線通信は、人間の生活において重要な需要となっている。
自然災害が襲うと、従来の無線ネットワークを利用することで、ユビキタスな接続が困難になる。
この文脈において、無人航空機(uav)ベースの航空ネットワークは、ミッションクリティカル(mc)シナリオにおける高速で柔軟で信頼性の高い無線通信の代替手段を提供する。
移動性、フレキシブルなデプロイメント、迅速な再設定といったユニークな特徴により、緊急時に地上のユーザにオンデマンド通信を提供するために、ドローンは簡単に位置を動的に変更できる。
その結果、UAV基地局(UAV-BS)の使用は、MCシナリオにおける迅速な接続を提供するための適切なアプローチとして検討されている。
本稿では,静的環境と動的環境の両方において,UAV-BSの制御方法を検討する。
本研究では,自然災害によってマクロbsが破壊され,iab(integrated access and backhaul)技術を用いてuav-bsが展開される状況を調査し,災害地域のユーザへのカバレッジを提供する。
本稿では,データ収集システム,シグナリング手順,機械学習の応用について述べる。
UAV-BSのアクセスとバックホールアンテナの傾斜と3次元配置を協調的に最適化するディープ強化学習アルゴリズムを開発した。
評価の結果,提案アルゴリズムは,地上のMCユーザを満足できるように自律的にUAV-BSをナビゲートし,設定することができることがわかった。
関連論文リスト
- Deep Reinforcement Learning Based Placement for Integrated Access
Backhauling in UAV-Assisted Wireless Networks [6.895620511689995]
本稿では, リアルタイムにUAV配置を最適化するために, 深部強化学習(DRL)を活用する新しい手法を提案する。
この取り組みの独特な貢献は、地上ユーザーとの堅牢な接続を保証するだけでなく、中央ネットワークインフラストラクチャとのシームレスな統合を維持するために、無人でUAVを配置できることにある。
論文 参考訳(メタデータ) (2023-12-21T19:02:27Z) - UAV Swarm-enabled Collaborative Secure Relay Communications with
Time-domain Colluding Eavesdropper [115.56455278813756]
航空中継機としての無人航空機(UAV)は、インターネットモノ(IoT)ネットワークの補助として事実上魅力的である。
本研究では,UAV基地局と端末端末装置間のセキュアな通信を支援するために,UAVを活用することを目的とする。
論文 参考訳(メタデータ) (2023-10-03T11:47:01Z) - UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks [52.14281905671453]
無人航空機(UAV)を空飛ぶ無線アクセスネットワーク(RAN)ノードとして使用することは、従来の固定地上配備を補完する。
無線マッピングは、この課題に関連する課題の1つであり、ここでは無線マッピングと呼ばれている。
接続性, センサ性, ローカライゼーション性能の観点から, 無線マッピングによる利点を示す。
論文 参考訳(メタデータ) (2022-05-06T16:16:08Z) - Autonomous Navigation and Configuration of Integrated Access Backhauling
for UAV Base Station Using Reinforcement Learning [13.836618781378796]
本稿では,このユースケースに機械学習を適用するためのフレームワークとシグナリング手法を提案する。
深い強化学習アルゴリズムは、UAV-BSの3次元位置だけでなく、アクセスとバックホールアンテナの傾きを協調的に最適化するように設計されている。
提案アルゴリズムは,UAV-BSを自律的にナビゲートし,そのスループットを向上し,MCユーザの減少率を低減できることを示す。
論文 参考訳(メタデータ) (2021-12-14T11:47:11Z) - 3D UAV Trajectory and Data Collection Optimisation via Deep
Reinforcement Learning [75.78929539923749]
無人航空機(UAV)は現在、無線通信におけるネットワーク性能とカバレッジを高めるために配備され始めている。
UAV支援モノのインターネット(IoT)のための最適な資源配分方式を得ることは困難である
本稿では,UAVの最も短い飛行経路に依存しつつ,IoTデバイスから収集したデータ量を最大化しながら,新しいUAV支援IoTシステムを設計する。
論文 参考訳(メタデータ) (2021-06-06T14:08:41Z) - Privacy-Preserving Federated Learning for UAV-Enabled Networks:
Learning-Based Joint Scheduling and Resource Management [45.15174235000158]
無人航空機(UAV)は、データ収集、人工知能(AI)モデルトレーニング、無線通信をサポートする飛行基地局(BS)として機能する。
モデルトレーニングのためにUAVサーバにデバイスの生データを送信するのは現実的ではない。
本稿では,マルチUAV対応ネットワークのための非同期フェデレーション学習フレームワークを開発する。
論文 参考訳(メタデータ) (2020-11-28T18:58:34Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z) - UAV Path Planning for Wireless Data Harvesting: A Deep Reinforcement
Learning Approach [18.266087952180733]
本稿では,IoT(Internet of Things)デバイスからのUAV対応データ収集に対するエンドツーエンド強化学習手法を提案する。
自律ドローンは、限られた飛行時間と障害物回避を受ける分散センサーノードからデータを収集する。
提案するネットワークアーキテクチャにより,エージェントが様々なシナリオパラメータの移動決定を行うことができることを示す。
論文 参考訳(メタデータ) (2020-07-01T15:14:16Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z) - Artificial Intelligence Aided Next-Generation Networks Relying on UAVs [140.42435857856455]
動的環境において,人工知能(AI)による無人航空機(UAV)による次世代ネットワーク支援が提案されている。
AI対応のUAV支援無線ネットワーク(UAWN)では、複数のUAVが航空基地局として使用され、ダイナミックな環境に迅速に適応することができる。
AIフレームワークの利点として、従来のUAWNのいくつかの課題が回避され、ネットワークパフォーマンスが向上し、信頼性が向上し、アジャイル適応性が向上する。
論文 参考訳(メタデータ) (2020-01-28T15:10:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。