論文の概要: UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks
- arxiv url: http://arxiv.org/abs/2205.03335v1
- Date: Fri, 6 May 2022 16:16:08 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-09 14:19:51.922587
- Title: UAV-aided RF Mapping for Sensing and Connectivity in Wireless Networks
- Title(参考訳): uav支援rfマッピングによる無線ネットワークのセンシングと接続
- Authors: David Gesbert, Omid Esrafilian, Junting Chen, Rajeev Gangula, Urbashi
Mitra
- Abstract要約: 無人航空機(UAV)を空飛ぶ無線アクセスネットワーク(RAN)ノードとして使用することは、従来の固定地上配備を補完する。
無線マッピングは、この課題に関連する課題の1つであり、ここでは無線マッピングと呼ばれている。
接続性, センサ性, ローカライゼーション性能の観点から, 無線マッピングによる利点を示す。
- 参考スコア(独自算出の注目度): 52.14281905671453
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of unmanned aerial vehicles (UAV) as flying radio access network
(RAN) nodes offers a promising complement to traditional fixed terrestrial
deployments. More recently yet still in the context of wireless networks,
drones have also been envisioned for use as radio frequency (RF) sensing and
localization devices. In both cases, the advantage of using UAVs lies in their
ability to navigate themselves freely in 3D and in a timely manner to locations
of space where the obtained network throughput or sensing performance is
optimal. In practice, the selection of a proper location or trajectory for the
UAV very much depends on local terrain features, including the position of
surrounding radio obstacles. Hence, the robot must be able to map the features
of its radio environment as it performs its data communication or sensing
services. The challenges related to this task, referred here as radio mapping,
are discussed in this paper. Its promises related to efficient trajectory
design for autonomous radio-aware UAVs are highlighted, along with algorithm
solutions. The advantages induced by radio-mapping in terms of connectivity,
sensing, and localization performance are illustrated.
- Abstract(参考訳): 無人航空機(UAV)を空飛ぶ無線アクセスネットワーク(RAN)ノードとして使用することは、従来の固定地上配備を補完する。
最近では、無線ネットワークの状況において、ドローンは無線周波数(RF)センシングやローカライゼーションデバイスとしての使用も想定されている。
どちらの場合も、UAVを使うことの利点は、得られるネットワークスループットやセンシング性能が最適である空間の位置に対して、3Dで自由に移動できることにある。
実際には、UAVの適切な位置または軌道の選択は、周囲の電波障害物の位置を含む局所的な地形の特徴に大きく依存している。
したがって、ロボットは、そのデータ通信やセンシングサービスを実行するとき、その無線環境の特徴をマッピングできなければならない。
本稿では,この課題に関連する課題を無線マッピングと呼ぶ。
自律型無線対応UAVの効率的な軌道設計に関する約束は、アルゴリズムソリューションとともに強調される。
無線マッピングによる接続性,センシング,局所化性能の点での利点を示す。
関連論文リスト
- RayProNet: A Neural Point Field Framework for Radio Propagation Modeling in 3D Environments [1.7074276434401858]
本稿では,無線チャネルモデリングのための機械学習を利用した新しい手法を提案する。
主な材料は、ポイントクラウドベースのニューラルネットワークと、光プローブを備えた球高調波エンコーダである。
論文 参考訳(メタデータ) (2024-06-04T01:06:41Z) - The Future of Aerial Communications: A Survey of IRS-Enhanced UAV Communication Technologies [2.8002534443865987]
Intelligent Reflecting Surfaces (IRS) と Unmanned Aerial Vehicles (UAVs) の出現は、無線通信分野における新たなベンチマークを設定している。
IRSは電磁波を操作するための画期的な能力を備えており、信号品質、ネットワーク効率、スペクトル利用の大幅な向上のための道を開いた。
UAVは、通信ネットワーク内の動的で汎用的な要素として出現し、従来の固定インフラが不足している地域では、高いモビリティとアクセスとカバー範囲の強化を実現している。
論文 参考訳(メタデータ) (2024-06-02T09:58:53Z) - Fast and Accurate Cooperative Radio Map Estimation Enabled by GAN [63.90647197249949]
6G時代には、無線リソースのリアルタイムモニタリングと管理が、多様な無線アプリケーションをサポートするように求められている。
本稿では,GAN(Generative Adversarial Network)による協調的無線地図推定手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T05:01:28Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - 5G Network on Wings: A Deep Reinforcement Learning Approach to the
UAV-based Integrated Access and Backhaul [11.197456628712846]
無人航空機(UAV)ベースの航空ネットワークは、高速で柔軟で信頼性の高い無線通信のための有望な代替手段を提供する。
本稿では,静的環境と動的環境の両方において,複数のUAV-BSを制御する方法について検討する。
複数のUAV-BSの3次元配置を協調的に最適化するために,深部強化学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-02-04T07:45:06Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z) - A Multi-UAV System for Exploration and Target Finding in Cluttered and
GPS-Denied Environments [68.31522961125589]
複雑なGPSを用いた複雑な環境において,UAVのチームが協調して目標を探索し,発見するための枠組みを提案する。
UAVのチームは自律的にナビゲートし、探索し、検出し、既知の地図で散らばった環境でターゲットを見つける。
その結果, 提案方式は, 時間的コスト, 調査対象地域の割合, 捜索・救助ミッションの成功率などの面で改善されていることがわかった。
論文 参考訳(メタデータ) (2021-07-19T12:54:04Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z) - Simultaneous Navigation and Radio Mapping for Cellular-Connected UAV
with Deep Reinforcement Learning [46.55077580093577]
空のUAVに対して、ユビキタスな3Dコミュニケーションを実現するには、新しい課題だ。
本稿では,UAVの制御可能な移動性を利用して航法・軌道を設計する新しい航法手法を提案する。
そこで我々は,UAVの信号計測を深部Qネットワークのトレーニングに用いるSNARM (Concurrent Navigation and Radio Mapping) という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T08:16:14Z) - Dynamic Radar Network of UAVs: A Joint Navigation and Tracking Approach [36.587096293618366]
新たな問題は、建物の後ろに隠れている無人小型無人航空機(UAV)を追跡することである。
本稿では,悪意のある標的のリアルタイムかつ高精度な追跡のためのUAVの動的レーダネットワークを提案する。
論文 参考訳(メタデータ) (2020-01-13T23:23:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。