Energy-Efficient High-Accuracy Spiking Neural Network Inference Using
Time-Domain Neurons
- URL: http://arxiv.org/abs/2202.02015v2
- Date: Sun, 10 Apr 2022 02:13:34 GMT
- Title: Energy-Efficient High-Accuracy Spiking Neural Network Inference Using
Time-Domain Neurons
- Authors: Joonghyun Song, Jiwon Shin, Hanseok Kim, Woo-Seok Choi
- Abstract summary: This paper presents a low-power highly linear time-domain I&F neuron circuit.
The proposed neuron leads to more than 4.3x lower error rate on the MNIST inference.
The power consumed by the proposed neuron circuit is simulated to be 0.230uW per neuron, which is orders of magnitude lower than the existing voltage-domain neurons.
- Score: 0.18352113484137625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the limitations of realizing artificial neural networks on prevalent
von Neumann architectures, recent studies have presented neuromorphic systems
based on spiking neural networks (SNNs) to reduce power and computational cost.
However, conventional analog voltage-domain integrate-and-fire (I&F) neuron
circuits, based on either current mirrors or op-amps, pose serious issues such
as nonlinearity or high power consumption, thereby degrading either inference
accuracy or energy efficiency of the SNN. To achieve excellent energy
efficiency and high accuracy simultaneously, this paper presents a low-power
highly linear time-domain I&F neuron circuit. Designed and simulated in a 28nm
CMOS process, the proposed neuron leads to more than 4.3x lower error rate on
the MNIST inference over the conventional current-mirror-based neurons. In
addition, the power consumed by the proposed neuron circuit is simulated to be
0.230uW per neuron, which is orders of magnitude lower than the existing
voltage-domain neurons.
Related papers
- A More Accurate Approximation of Activation Function with Few Spikes Neurons [6.306126887439676]
spiking neural networks (SNNs) have attracted lots of attention as energy-efficient neural networks.
conventional spiking neurons, such as leaky integrate-and-fire neurons, cannot accurately represent complex non-linear activation functions.
arXiv Detail & Related papers (2024-08-19T02:08:56Z) - Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
Spiking Neural Networks (SNNs) represent the forefront of neuromorphic computing.
This paper weaves together three groundbreaking studies that revolutionize SNN performance.
arXiv Detail & Related papers (2024-07-08T23:33:12Z) - Deep Pulse-Coupled Neural Networks [31.65350290424234]
Neural Networks (SNNs) capture the information processing mechanism of the brain by taking advantage of neurons.
In this work, we leverage a more biologically plausible neural model with complex dynamics, i.e., a pulse-coupled neural network (PCNN)
We construct deep pulse-coupled neural networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN neurons.
arXiv Detail & Related papers (2023-12-24T08:26:00Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Constraints on the design of neuromorphic circuits set by the properties
of neural population codes [61.15277741147157]
In the brain, information is encoded, transmitted and used to inform behaviour.
Neuromorphic circuits need to encode information in a way compatible to that used by populations of neuron in the brain.
arXiv Detail & Related papers (2022-12-08T15:16:04Z) - Spiking neural network for nonlinear regression [68.8204255655161]
Spiking neural networks carry the potential for a massive reduction in memory and energy consumption.
They introduce temporal and neuronal sparsity, which can be exploited by next-generation neuromorphic hardware.
A framework for regression using spiking neural networks is proposed.
arXiv Detail & Related papers (2022-10-06T13:04:45Z) - SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network [12.237928453571636]
Spiking Neural Networks (SNNs) have piqued researchers' interest because of their capacity to process temporal information and low power consumption.
Current state-of-the-art methods limited their biological plausibility and performance because their neurons are generally built on the simple Leaky-Integrate-and-Fire (LIF) model.
Due to the high level of dynamic complexity, modern neuron models have seldom been implemented in SNN practice.
arXiv Detail & Related papers (2022-03-30T07:50:44Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
Bio-inspired neural networks can potentially lead to greater computational efficiency on event-driven hardware.
We propose a novel Event-based Video reconstruction framework based on a fully Spiking Neural Network (EVSNN)
We find that the spiking neurons have the potential to store useful temporal information (memory) to complete such time-dependent tasks.
arXiv Detail & Related papers (2022-01-25T02:05:20Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Improving Spiking Neural Network Accuracy Using Time-based Neurons [0.24366811507669117]
Research on neuromorphic computing systems based on low-power spiking neural networks using analog neurons is in the spotlight.
As technology scales down, analog neurons are difficult to scale, and they suffer from reduced voltage headroom/dynamic range and circuit nonlinearities.
This paper first models the nonlinear behavior of existing current-mirror-based voltage-domain neurons designed in a 28nm process, and show SNN inference accuracy can be severely degraded by the effect of neuron's nonlinearity.
We propose a novel neuron, which processes incoming spikes in the time domain and greatly improves the linearity, thereby improving the inference accuracy compared to the
arXiv Detail & Related papers (2022-01-05T00:24:45Z) - Continuous Learning and Adaptation with Membrane Potential and
Activation Threshold Homeostasis [91.3755431537592]
This paper presents the Membrane Potential and Activation Threshold Homeostasis (MPATH) neuron model.
The model allows neurons to maintain a form of dynamic equilibrium by automatically regulating their activity when presented with input.
Experiments demonstrate the model's ability to adapt to and continually learn from its input.
arXiv Detail & Related papers (2021-04-22T04:01:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.