SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network
- URL: http://arxiv.org/abs/2203.16117v2
- Date: Fri, 1 Apr 2022 09:09:03 GMT
- Title: SIT: A Bionic and Non-Linear Neuron for Spiking Neural Network
- Authors: Cheng Jin, Rui-Jie Zhu, Xiao Wu, Liang-Jian Deng
- Abstract summary: Spiking Neural Networks (SNNs) have piqued researchers' interest because of their capacity to process temporal information and low power consumption.
Current state-of-the-art methods limited their biological plausibility and performance because their neurons are generally built on the simple Leaky-Integrate-and-Fire (LIF) model.
Due to the high level of dynamic complexity, modern neuron models have seldom been implemented in SNN practice.
- Score: 12.237928453571636
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Spiking Neural Networks (SNNs) have piqued researchers' interest because of
their capacity to process temporal information and low power consumption.
However, current state-of-the-art methods limited their biological plausibility
and performance because their neurons are generally built on the simple
Leaky-Integrate-and-Fire (LIF) model. Due to the high level of dynamic
complexity, modern neuron models have seldom been implemented in SNN practice.
In this study, we adopt the Phase Plane Analysis (PPA) technique, a technique
often utilized in neurodynamics field, to integrate a recent neuron model,
namely, the Izhikevich neuron. Based on the findings in the advancement of
neuroscience, the Izhikevich neuron model can be biologically plausible while
maintaining comparable computational cost with LIF neurons. By utilizing the
adopted PPA, we have accomplished putting neurons built with the modified
Izhikevich model into SNN practice, dubbed as the Standardized Izhikevich Tonic
(SIT) neuron. For performance, we evaluate the suggested technique for image
classification tasks in self-built LIF-and-SIT-consisted SNNs, named Hybrid
Neural Network (HNN) on static MNIST, Fashion-MNIST, CIFAR-10 datasets and
neuromorphic N-MNIST, CIFAR10-DVS, and DVS128 Gesture datasets. The
experimental results indicate that the suggested method achieves comparable
accuracy while exhibiting more biologically realistic behaviors on nearly all
test datasets, demonstrating the efficiency of this novel strategy in bridging
the gap between neurodynamics and SNN practice.
Related papers
- Deep Pulse-Coupled Neural Networks [31.65350290424234]
Neural Networks (SNNs) capture the information processing mechanism of the brain by taking advantage of neurons.
In this work, we leverage a more biologically plausible neural model with complex dynamics, i.e., a pulse-coupled neural network (PCNN)
We construct deep pulse-coupled neural networks (DPCNNs) by replacing commonly used LIF neurons in SNNs with PCNN neurons.
arXiv Detail & Related papers (2023-12-24T08:26:00Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
Brain-inspired spiking neural networks (SNNs) have demonstrated promising capabilities in solving pattern recognition tasks.
These SNNs are grounded on homogeneous neurons that utilize a uniform neural coding for information representation.
In this study, we argue that SNN architectures should be holistically designed to incorporate heterogeneous coding schemes.
arXiv Detail & Related papers (2023-05-26T02:52:12Z) - Multi-scale Evolutionary Neural Architecture Search for Deep Spiking
Neural Networks [7.271032282434803]
We propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for Spiking Neural Networks (SNNs)
MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs)
The proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets and neuromorphic datasets.
arXiv Detail & Related papers (2023-04-21T05:36:37Z) - PC-SNN: Supervised Learning with Local Hebbian Synaptic Plasticity based
on Predictive Coding in Spiking Neural Networks [1.6172800007896282]
We propose a novel learning algorithm inspired by predictive coding theory.
We show that it can perform supervised learning fully autonomously and successfully as the backprop.
This method achieves a favorable performance compared to the state-of-the-art multi-layer SNNs.
arXiv Detail & Related papers (2022-11-24T09:56:02Z) - A Synapse-Threshold Synergistic Learning Approach for Spiking Neural
Networks [1.8556712517882232]
Spiking neural networks (SNNs) have demonstrated excellent capabilities in various intelligent scenarios.
In this study, we develop a novel synergistic learning approach that involves simultaneously training synaptic weights and spike thresholds in SNNs.
arXiv Detail & Related papers (2022-06-10T06:41:36Z) - STNDT: Modeling Neural Population Activity with a Spatiotemporal
Transformer [19.329190789275565]
We introduce SpatioTemporal Neural Data Transformer (STNDT), an NDT-based architecture that explicitly models responses of individual neurons.
We show that our model achieves state-of-the-art performance on ensemble level in estimating neural activities across four neural datasets.
arXiv Detail & Related papers (2022-06-09T18:54:23Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - Dynamic Neural Diversification: Path to Computationally Sustainable
Neural Networks [68.8204255655161]
Small neural networks with a constrained number of trainable parameters, can be suitable resource-efficient candidates for many simple tasks.
We explore the diversity of the neurons within the hidden layer during the learning process.
We analyze how the diversity of the neurons affects predictions of the model.
arXiv Detail & Related papers (2021-09-20T15:12:16Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
We introduce a novel training strategy that allows learning not only the input-output behavior of an RNN but also its internal network dynamics.
We test the proposed method by training an RNN to simultaneously reproduce internal dynamics and output signals of a physiologically-inspired neural model.
Remarkably, we show that the reproduction of the internal dynamics is successful even when the training algorithm relies on the activities of a small subset of neurons.
arXiv Detail & Related papers (2020-05-05T14:16:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.