3D Point Cloud Registration with Learning-based Matching Algorithm
- URL: http://arxiv.org/abs/2202.02149v4
- Date: Mon, 4 Dec 2023 09:27:15 GMT
- Title: 3D Point Cloud Registration with Learning-based Matching Algorithm
- Authors: Rintaro Yanagi, Atsushi Hashimoto, Shusaku Sone, Naoya Chiba, Jiaxin
Ma, and Yoshitaka Ushiku
- Abstract summary: We present a novel differential matching algorithm for 3D point cloud registration.
Instead of only optimizing the feature extractor for a matching algorithm, we propose a learning-based matching module optimized to the jointly-trained feature extractor.
- Score: 14.417543289507543
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel differential matching algorithm for 3D point cloud
registration. Instead of only optimizing the feature extractor for a matching
algorithm, we propose a learning-based matching module optimized to the
jointly-trained feature extractor. We focused on edge-wise feature-forwarding
architectures, which are memory-consuming but can avoid the over-smoothing
effect that GNNs suffer. We improve its memory efficiency to scale it for point
cloud registration while investigating the best way of connecting it to the
feature extractor. Experimental results show our matching module's significant
impact on performance improvement in rigid/non-rigid and whole/partial point
cloud registration datasets with multiple contemporary feature extractors. For
example, our module boosted the current SOTA method, RoITr, by +5.4%, and +7.2%
in the NFMR metric and +6.1% and +8.5% in the IR metric on the 4DMatch and
4DLoMatch datasets, respectively.
Related papers
- RGBD-Glue: General Feature Combination for Robust RGB-D Point Cloud Registration [0.0]
We propose a new feature combination framework, which applies a looser but more effective combination.
An explicit filter based on transformation consistency is designed for the combination framework, which can overcome each feature's weakness.
Experiments on ScanNet and 3DMatch show that our method achieves a state-of-the-art performance.
arXiv Detail & Related papers (2024-05-13T09:56:28Z) - Multiway Point Cloud Mosaicking with Diffusion and Global Optimization [74.3802812773891]
We introduce a novel framework for multiway point cloud mosaicking (named Wednesday)
At the core of our approach is ODIN, a learned pairwise registration algorithm that identifies overlaps and refines attention scores.
Tested on four diverse, large-scale datasets, our method state-of-the-art pairwise and rotation registration results by a large margin on all benchmarks.
arXiv Detail & Related papers (2024-03-30T17:29:13Z) - PosDiffNet: Positional Neural Diffusion for Point Cloud Registration in
a Large Field of View with Perturbations [27.45001809414096]
PosDiffNet is a model for point cloud registration in 3D computer vision.
We leverage a graph neural partial differential equation (PDE) based on Beltrami flow to obtain high-dimensional features.
We employ the multi-level correspondence derived from the high feature similarity scores to facilitate alignment between point clouds.
We evaluate PosDiffNet on several 3D point cloud datasets, verifying that it achieves state-of-the-art (SOTA) performance for point cloud registration in large fields of view with perturbations.
arXiv Detail & Related papers (2024-01-06T08:58:15Z) - Overlap-guided Gaussian Mixture Models for Point Cloud Registration [61.250516170418784]
Probabilistic 3D point cloud registration methods have shown competitive performance in overcoming noise, outliers, and density variations.
This paper proposes a novel overlap-guided probabilistic registration approach that computes the optimal transformation from matched Gaussian Mixture Model (GMM) parameters.
arXiv Detail & Related papers (2022-10-17T08:02:33Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
We set transformers in this work and incorporate them into a hierarchical framework for shape classification and part and scene segmentation.
We also compute efficient and dynamic global cross attentions by leveraging sampling and grouping at each iteration.
The proposed hierarchical model achieves state-of-the-art shape classification in mean accuracy and yields results on par with the previous segmentation methods.
arXiv Detail & Related papers (2022-07-31T21:39:15Z) - GenReg: Deep Generative Method for Fast Point Cloud Registration [18.66568286698704]
We propose a new data-driven registration algorithm by investigating deep generative neural networks to point cloud registration.
The experiments on both ModelNet40 and 7Scene datasets demonstrate that the proposed algorithm achieves state-of-the-art accuracy and efficiency.
arXiv Detail & Related papers (2021-11-23T10:52:09Z) - Deep Hough Voting for Robust Global Registration [52.40611370293272]
We present an efficient framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space.
Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset.
arXiv Detail & Related papers (2021-09-09T14:38:06Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
We introduce RandLA-Net, an efficient and lightweight neural architecture to infer per-point semantics for large-scale point clouds.
The key to our approach is to use random point sampling instead of more complex point selection approaches.
Our RandLA-Net can process 1 million points in a single pass up to 200x faster than existing approaches.
arXiv Detail & Related papers (2021-07-06T05:08:34Z) - M3DeTR: Multi-representation, Multi-scale, Mutual-relation 3D Object
Detection with Transformers [78.48081972698888]
We present M3DeTR, which combines different point cloud representations with different feature scales based on multi-scale feature pyramids.
M3DeTR is the first approach that unifies multiple point cloud representations, feature scales, as well as models mutual relationships between point clouds simultaneously using transformers.
arXiv Detail & Related papers (2021-04-24T06:48:23Z) - PointASNL: Robust Point Clouds Processing using Nonlocal Neural Networks
with Adaptive Sampling [39.36827481232841]
We present a novel end-to-end network for robust point clouds processing, named PointASNL.
Key component in our approach is the adaptive sampling (AS) module.
Our AS module can not only benefit the feature learning of point clouds, but also ease the biased effect of outliers.
arXiv Detail & Related papers (2020-03-01T14:04:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.