Compact quantum kernel-based binary classifier
- URL: http://arxiv.org/abs/2202.02151v2
- Date: Fri, 15 Jul 2022 06:35:39 GMT
- Title: Compact quantum kernel-based binary classifier
- Authors: Carsten Blank, Adenilton J. da Silva, Lucas P. de Albuquerque,
Francesco Petruccione, Daniel K. Park
- Abstract summary: We present the simplest quantum circuit for constructing a kernel-based binary classifier.
The number of qubits is reduced by two and the number of steps is reduced linearly.
Our design also provides a straightforward way to handle an imbalanced data set.
- Score: 2.0684234025249717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum computing opens exciting opportunities for kernel-based machine
learning methods, which have broad applications in data analysis. Recent works
show that quantum computers can efficiently construct a model of a classifier
by engineering the quantum interference effect to carry out the kernel
evaluation in parallel. For practical applications of these quantum machine
learning methods, an important issue is to minimize the size of quantum
circuits. We present the simplest quantum circuit for constructing a
kernel-based binary classifier. This is achieved by generalizing the
interference circuit to encode data labels in the relative phases of the
quantum state and by introducing compact amplitude encoding, which encodes two
training data vectors into one quantum register. When compared to the simplest
known quantum binary classifier, the number of qubits is reduced by two and the
number of steps is reduced linearly with respect to the number of training
data. The two-qubit measurement with post-selection required in the previous
method is simplified to single-qubit measurement. Furthermore, the final
quantum state has a smaller amount of entanglement than that of the previous
method, which advocates the cost-effectiveness of our method. Our design also
provides a straightforward way to handle an imbalanced data set, which is often
encountered in many machine learning problems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Quadratic speed-ups in quantum kernelized binary classification [1.3812010983144802]
Several quantum machine learning algorithms that use quantum kernels as a measure of similarities between data have emerged to perform binary classification on datasets encoded as quantum states.
We propose new quantum circuits for the QKCs in which the number of qubits is reduced by one, and the circuit depth is reduced linearly with respect to the number of sample data.
We verify the quadratic speed-up over previous methods through numerical simulations on the Iris dataset.
arXiv Detail & Related papers (2024-03-26T07:39:48Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Realization of quantum algorithms with qudits [0.7892577704654171]
We review several ideas indicating how multilevel quantum systems, also known as qudits, can be used for efficient realization of quantum algorithms.
We focus on techniques of leveraging qudits for simplifying decomposition of multiqubit gates, and for compressing quantum information by encoding multiple qubits in a single qudit.
These theoretical schemes can be implemented with quantum computing platforms of various nature, such as trapped ions, neutral atoms, superconducting junctions, and quantum light.
arXiv Detail & Related papers (2023-11-20T18:34:19Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Data compression for quantum machine learning [2.119778346188635]
We address the problem of efficiently compressing and loading classical data for use on a quantum computer.
Our proposed methods allow both the required number of qubits and depth of the quantum circuit to be tuned.
arXiv Detail & Related papers (2022-04-24T03:03:14Z) - Quantum circuit debugging and sensitivity analysis via local inversions [62.997667081978825]
We present a technique that pinpoints the sections of a quantum circuit that affect the circuit output the most.
We demonstrate the practicality and efficacy of the proposed technique by applying it to example algorithmic circuits implemented on IBM quantum machines.
arXiv Detail & Related papers (2022-04-12T19:39:31Z) - Efficient realization of quantum algorithms with qudits [0.70224924046445]
We propose a technique for an efficient implementation of quantum algorithms with multilevel quantum systems (qudits)
Our method uses a transpilation of a circuit in the standard qubit form, which depends on the parameters of a qudit-based processor.
We provide an explicit scheme of transpiling qubit circuits into sequences of single-qudit and two-qudit gates taken from a particular universal set.
arXiv Detail & Related papers (2021-11-08T11:09:37Z) - Robust quantum classifier with minimal overhead [0.8057006406834467]
Several quantum algorithms for binary classification based on the kernel method have been proposed.
These algorithms rely on estimating an expectation value, which in turn requires an expensive quantum data encoding procedure to be repeated many times.
We show that the kernel-based binary classification can be performed with a single-qubit measurement regardless of the number and the dimension of the data.
arXiv Detail & Related papers (2021-04-16T14:51:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.