論文の概要: A note on the complex and bicomplex valued neural networks
- arxiv url: http://arxiv.org/abs/2202.02354v1
- Date: Fri, 4 Feb 2022 19:25:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 18:50:02.849601
- Title: A note on the complex and bicomplex valued neural networks
- Title(参考訳): 複素および複複素値ニューラルネットワークに関する一考察
- Authors: Daniel Alpay and Kamal Diki and Mihaela Vajiac
- Abstract要約: まず、複素多値ニューラルネットワーク(CMVNN)のパーセプトロン収束アルゴリズムの証明を記述する。
我々の第一の目的は、両複素多値ニューラルネットワーク(BMVNN)のパーセプトロン収束アルゴリズムを定式化し、証明することである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this paper we first write a proof of the perceptron convergence algorithm
for the complex multivalued neural networks (CMVNNs). Our primary goal is to
formulate and prove the perceptron convergence algorithm for the bicomplex
multivalued neural networks (BMVNNs) and other important results in the theory
of neural networks based on a bicomplex algebra.
- Abstract(参考訳): 本稿では,複素多値ニューラルネットワーク(cmvnn)に対するパーセプトロン収束アルゴリズムの証明を最初に記述する。
我々の主要な目標は、複複素多値ニューラルネットワーク(bmvnns)のパーセプトロン収束アルゴリズムを定式化し、証明することと、双複素代数に基づくニューラルネットワークの理論における他の重要な結果を証明することである。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Evidence, Definitions and Algorithms regarding the Existence of
Cohesive-Convergence Groups in Neural Network Optimization [0.0]
ニューラルネットワークのプロセスを理解することは、機械学習の分野で最も複雑で重要な問題の1つである。
本稿では,ニューラルネットワークの理論的収束に着目した。
論文 参考訳(メタデータ) (2024-03-08T13:23:42Z) - Universal Approximation Theorem for Vector- and Hypercomplex-Valued Neural Networks [0.3686808512438362]
普遍近似定理(英: universal approximation theorem)は、1つの隠れた層を持つニューラルネットワークがコンパクト集合上の連続関数を近似できるという定理である。
これは、実数値ニューラルネットワークと超複素数値ニューラルネットワークに有効である。
論文 参考訳(メタデータ) (2024-01-04T13:56:13Z) - On the Approximation and Complexity of Deep Neural Networks to Invariant
Functions [0.0]
深部ニューラルネットワークの不変関数への近似と複雑性について検討する。
様々なタイプのニューラルネットワークモデルにより、幅広い不変関数を近似できることを示す。
我々は,高分解能信号のパラメータ推定と予測を理論的結論と結びつけることが可能なアプリケーションを提案する。
論文 参考訳(メタデータ) (2022-10-27T09:19:19Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Extending the Universal Approximation Theorem for a Broad Class of
Hypercomplex-Valued Neural Networks [1.0323063834827413]
普遍近似定理は、単一の隠れ層ニューラルネットワークがコンパクト集合上の任意の所望の精度で連続関数を近似すると主張する。
本稿では,超複素数値ニューラルネットワークの広範クラスに対する普遍近似定理を拡張した。
論文 参考訳(メタデータ) (2022-09-06T12:45:15Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
PNN(Polynomial Neural Network)は、高頻度情報を重要視する画像生成と顔認識に特に有効であることが示されている。
これまでの研究では、ニューラルネットワークが低周波関数に対して$textitspectral bias$を示しており、トレーニング中に低周波成分のより高速な学習をもたらすことが示されている。
このような研究に触発されて、我々はPNNのTangent Kernel(NTK)のスペクトル分析を行う。
我々は、最近提案されたPNNのパラメトリゼーションである$Pi$-Netファミリがスピードアップすることを発見した。
論文 参考訳(メタデータ) (2022-02-27T23:12:43Z) - Development and Training of Quantum Neural Networks, Based on the
Principles of Grover's Algorithm [0.0]
本稿では,ニューラルネットワークのトレーニングプロセスと,量子回路として解釈されたニューラルネットワークの機能構造を組み合わせることを提案する。
ニューラルネットワークの単純な例として、この概念を示すために、トレーニング可能なパラメータが1つあるパーセプトロン(隠されたニューロンに接続されたシナプスの重さ)がある。
論文 参考訳(メタデータ) (2021-10-01T14:08:43Z) - Towards Understanding Theoretical Advantages of Complex-Reaction
Networks [77.34726150561087]
パラメータ数を用いて,関数のクラスを複素反応ネットワークで近似できることを示す。
経験的リスク最小化については,複素反応ネットワークの臨界点集合が実数値ネットワークの固有部分集合であることを示す。
論文 参考訳(メタデータ) (2021-08-15T10:13:49Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic Neural Network (AlgNN) は、代数的信号モデルと関連する各層のカスケードで構成されている。
畳み込みという形式的な概念を用いるアーキテクチャは、シフト演算子の特定の選択を超えて、いかに安定であるかを示す。
論文 参考訳(メタデータ) (2020-10-22T09:10:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。