Stratification of carotid atheromatous plaque using interpretable deep
learning methods on B-mode ultrasound images
- URL: http://arxiv.org/abs/2202.02428v1
- Date: Fri, 4 Feb 2022 23:10:24 GMT
- Title: Stratification of carotid atheromatous plaque using interpretable deep
learning methods on B-mode ultrasound images
- Authors: Theofanis Ganitidis, Maria Athanasiou, Kalliopi Dalakleidi, Nikos
Melanitis, Spyretta Golemati, Konstantina S Nikita
- Abstract summary: Carotid atherosclerosis is the major cause of ischemic stroke resulting in significant rates of mortality and disability annually.
This paper introduces an interpretable classification approach of carotid ultrasound images for the risk assessment and stratification of patients with carotid atheromatous plaque.
- Score: 1.1254693939127909
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Carotid atherosclerosis is the major cause of ischemic stroke resulting in
significant rates of mortality and disability annually. Early diagnosis of such
cases is of great importance, since it enables clinicians to apply a more
effective treatment strategy. This paper introduces an interpretable
classification approach of carotid ultrasound images for the risk assessment
and stratification of patients with carotid atheromatous plaque. To address the
highly imbalanced distribution of patients between the symptomatic and
asymptomatic classes (16 vs 58, respectively), an ensemble learning scheme
based on a sub-sampling approach was applied along with a two-phase,
cost-sensitive strategy of learning, that uses the original and a resampled
data set. Convolutional Neural Networks (CNNs) were utilized for building the
primary models of the ensemble. A six-layer deep CNN was used to automatically
extract features from the images, followed by a classification stage of two
fully connected layers. The obtained results (Area Under the ROC Curve (AUC):
73%, sensitivity: 75%, specificity: 70%) indicate that the proposed approach
achieved acceptable discrimination performance. Finally, interpretability
methods were applied on the model's predictions in order to reveal insights on
the model's decision process as well as to enable the identification of novel
image biomarkers for the stratification of patients with carotid atheromatous
plaque.Clinical Relevance-The integration of interpretability methods with deep
learning strategies can facilitate the identification of novel ultrasound image
biomarkers for the stratification of patients with carotid atheromatous plaque.
Related papers
- Transformer-Based Self-Supervised Learning for Histopathological Classification of Ischemic Stroke Clot Origin [0.0]
Identifying the thromboembolism source in ischemic stroke is crucial for treatment and secondary prevention.
This study describes a self-supervised deep learning approach in digital pathology of emboli for classifying ischemic stroke clot origin.
arXiv Detail & Related papers (2024-05-01T23:40:12Z) - SSASS: Semi-Supervised Approach for Stenosis Segmentation [9.767759441883008]
The complexity of coronary artery structures combined with the inherent noise in X-ray images poses a considerable challenge to this task.
We introduce a semi-supervised approach for cardiovascular stenosis segmentation.
Our approach demonstrated an exceptional performance in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T02:01:19Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
We propose a deep neural network that classifies the tissues from the phase and intensity data of complex OCT signals acquired at the needle tip.
We show that with 10% of the training set, our proposed pretraining strategy helps the model achieve an F1 score of 0.84 whereas the model achieves an F1 score of 0.60 without it.
arXiv Detail & Related papers (2023-04-26T14:11:04Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
We consider machine-learning-based malignancy prediction and lesion identification from clinical dermatological images.
We first identify all lesions present in the image regardless of sub-type or likelihood of malignancy, then it estimates their likelihood of malignancy, and through aggregation, it also generates an image-level likelihood of malignancy.
arXiv Detail & Related papers (2021-04-02T20:52:05Z) - Automated Detection of Coronary Artery Stenosis in X-ray Angiography
using Deep Neural Networks [0.0]
We propose a two-step deep-learning framework to partially automate the detection of stenosis from X-ray coronary angiography images.
We achieved a 0.97 accuracy on the task of classifying the Left/Right Coronary Artery angle view and 0.68/0.73 recall on the determination of the regions of interest, for LCA and RCA, respectively.
arXiv Detail & Related papers (2021-03-04T11:45:54Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A new approach to extracting coronary arteries and detecting stenosis in
invasive coronary angiograms [9.733630514873376]
We aim to develop an automatic algorithm by deep learning to extract coronary arteries from ICAs.
In this study, a multi-input and multi-scale (MIMS) U-Net with a two-stage recurrent training strategy was proposed for the automatic vessel segmentation.
Experimental results demonstrated that the proposed method achieved an average Dice score of 0.8329, an average sensitivity of 0.8281, and an average specificity of 0.9979 in our dataset with 294 ICAs obtained from 73 patient.
arXiv Detail & Related papers (2021-01-25T01:48:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.