論文の概要: TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
Potentials
- arxiv url: http://arxiv.org/abs/2202.02541v1
- Date: Sat, 5 Feb 2022 12:53:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 15:09:36.952253
- Title: TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
Potentials
- Title(参考訳): TorchMD-NET:ニューラルネットワークに基づく分子ポテンシャルの等価変換器
- Authors: Philipp Th\"olke and Gianni De Fabritiis
- Abstract要約: 本稿では,新しい変圧器(ET)アーキテクチャであるTorchMD-NETを提案する。
- 参考スコア(独自算出の注目度): 2.538209532048867
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prediction of quantum mechanical properties is historically plagued by a
trade-off between accuracy and speed. Machine learning potentials have
previously shown great success in this domain, reaching increasingly better
accuracy while maintaining computational efficiency comparable with classical
force fields. In this work we propose TorchMD-NET, a novel equivariant
transformer (ET) architecture, outperforming state-of-the-art on MD17, ANI-1,
and many QM9 targets in both accuracy and computational efficiency. Through an
extensive attention weight analysis, we gain valuable insights into the black
box predictor and show differences in the learned representation of conformers
versus conformations sampled from molecular dynamics or normal modes.
Furthermore, we highlight the importance of datasets including off-equilibrium
conformations for the evaluation of molecular potentials.
- Abstract(参考訳): 量子力学特性の予測は歴史的に精度と速度のトレードオフによって苦しめられた。
機械学習のポテンシャルはこの領域で大きく成功し、古典的な力場に匹敵する計算効率を維持しながら、ますます精度が向上している。
本稿では,md17,ani-1,および多くのqm9ターゲットにおいて,精度と計算効率の両方において最先端を上回っている,新しい等価トランスフォーマー(et)アーキテクチャであるtorchmd-netを提案する。
広範に注目する重み解析により,ブラックボックス予測器について貴重な知見を得て,分子動力学や正常モードから採取したコンフォメーションとコンフォメーションの学習表現の違いを示す。
さらに,分子ポテンシャル評価のための非平衡コンフォーメーションを含むデータセットの重要性を強調した。
関連論文リスト
- Universal neural network potentials as descriptors: Towards scalable chemical property prediction using quantum and classical computers [0.0]
本稿では,化学特性予測のための汎用記述子として,普遍的ニューラルネットワークポテンシャルの中間情報を利用する汎用的アプローチを提案する。
本稿では,M3GNet や MACE などのグラフニューラルネットワークを用いた伝達学習が,NMR の化学シフトを予測するための最先端手法に匹敵する精度を実現することを示す。
論文 参考訳(メタデータ) (2024-02-28T15:57:22Z) - A Multi-Grained Symmetric Differential Equation Model for Learning Protein-Ligand Binding Dynamics [73.35846234413611]
薬物発見において、分子動力学(MD)シミュレーションは、結合親和性を予測し、輸送特性を推定し、ポケットサイトを探索する強力なツールを提供する。
我々は,数値MDを容易にし,タンパク質-リガンド結合ダイナミクスの正確なシミュレーションを提供する,最初の機械学習サロゲートであるNeuralMDを提案する。
従来の数値MDシミュレーションと比較して1K$times$ Speedupを実現することにより,NeuralMDの有効性と有効性を示す。
論文 参考訳(メタデータ) (2024-01-26T09:35:17Z) - QKSAN: A Quantum Kernel Self-Attention Network [53.96779043113156]
量子カーネル法(Quantum Kernel Methods, QKM)のデータ表現能力とSAMの効率的な情報抽出能力を組み合わせた量子カーネル自己認識機構(Quantum Kernel Self-Attention Mechanism, QKSAM)を導入する。
量子カーネル自己保持ネットワーク(QKSAN)フレームワークは,DMP(Dederred Measurement Principle)と条件測定技術を巧みに組み込んだQKSAMに基づいて提案されている。
4つのQKSANサブモデルはPennyLaneとIBM Qiskitプラットフォームにデプロイされ、MNISTとFashion MNISTのバイナリ分類を実行する。
論文 参考訳(メタデータ) (2023-08-25T15:08:19Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
QH9と呼ばれる新しい量子ハミルトンデータセットを生成し、999または2998の分子動力学軌道に対して正確なハミルトン行列を提供する。
現在の機械学習モデルでは、任意の分子に対するハミルトン行列を予測する能力がある。
論文 参考訳(メタデータ) (2023-06-15T23:39:07Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Learning Local Equivariant Representations for Large-Scale Atomistic
Dynamics [0.6861083714313458]
アレグロは厳密な局所同変深層学習の原子間ポテンシャルである。
並列計算の精度とスケーラビリティを両立させる。
単一のテンソル積層は、既存のディープメッセージパッシングニューラルネットワークやトランスフォーマーよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-04-11T16:48:41Z) - Quantum-tailored machine-learning characterization of a superconducting
qubit [50.591267188664666]
我々は,量子デバイスのダイナミクスを特徴付ける手法を開発し,デバイスパラメータを学習する。
このアプローチは、数値的に生成された実験データに基づいてトレーニングされた物理に依存しないリカレントニューラルネットワークより優れている。
このデモンストレーションは、ドメイン知識を活用することで、この特徴付けタスクの正確性と効率が向上することを示す。
論文 参考訳(メタデータ) (2021-06-24T15:58:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
物理や機械学習に基づく反応力場は、時間と長さのスケールのギャップを埋めるために使うことができる。
本稿では,原子周囲の電子密度の物理的に関連する多極展開を利用するガウス多極(GMP)デデュール化スキームを紹介する。
我々は,GMPに基づくモデルがQM9データセットの化学的精度を達成できることを示し,新しい要素を外挿してもその精度は妥当であることを示した。
論文 参考訳(メタデータ) (2021-02-04T03:11:00Z) - Multi-task learning for electronic structure to predict and explore
molecular potential energy surfaces [39.228041052681526]
我々はOrbNetモデルを洗練し、分子のエネルギー、力、その他の応答特性を正確に予測する。
このモデルは、すべての電子構造項に対する解析的勾配の導出により、エンドツーエンドで微分可能である。
ドメイン固有の特徴を用いることにより、化学空間をまたいで移動可能であることが示されている。
論文 参考訳(メタデータ) (2020-11-05T06:48:46Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
VQEとADAPT-VQEの精度をベンチマークし、電子基底状態とポテンシャルエネルギー曲線を計算する。
どちらの手法もエネルギーと基底状態の優れた推定値を提供する。
勾配に基づく最適化はより経済的であり、勾配のない類似シミュレーションよりも優れた性能を提供する。
論文 参考訳(メタデータ) (2020-11-02T19:52:04Z) - OrbNet: Deep Learning for Quantum Chemistry Using Symmetry-Adapted
Atomic-Orbital Features [42.96944345045462]
textscOrbNetは、学習効率と転送可能性の観点から、既存のメソッドよりも優れています。
薬物のような分子のデータセットに応用するために、textscOrbNetは1000倍以上の計算コストでDFTの化学的精度でエネルギーを予測する。
論文 参考訳(メタデータ) (2020-07-15T22:38:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。