論文の概要: Path-integral molecular dynamics with actively-trained and universal machine learning force fields
- arxiv url: http://arxiv.org/abs/2505.14245v1
- Date: Tue, 20 May 2025 11:55:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-21 14:49:53.15325
- Title: Path-integral molecular dynamics with actively-trained and universal machine learning force fields
- Title(参考訳): アクティブトレーニングおよび普遍機械学習力場を用いた経路積分分子動力学
- Authors: A. A. Solovykh, N. E. Rybin, I. S. Novikov, A. V. Shapeev,
- Abstract要約: 核量子効果(NQEs)の会計は、有限温度での材料特性を著しく変化させることができる。
マシンが学習する原子間ポテンシャルは、この課題に対する解決策を提供する。
インタフェースは、MLIP-2ソフトウェアパッケージからのモーメントテンソルポテンシャル(MTP)をPIMD計算に統合するために開発された。
その結果、実験データ、準調和近似計算、および汎用機械学習力場MatterSimからの予測と比較した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accounting for nuclear quantum effects (NQEs) can significantly alter material properties at finite temperatures. Atomic modeling using the path-integral molecular dynamics (PIMD) method can fully account for such effects, but requires computationally efficient and accurate models of interatomic interactions. Empirical potentials are fast but may lack sufficient accuracy, whereas quantum-mechanical calculations are highly accurate but computationally expensive. Machine-learned interatomic potentials offer a solution to this challenge, providing near-quantum-mechanical accuracy while maintaining high computational efficiency compared to density functional theory (DFT) calculations. In this context, an interface was developed to integrate moment tensor potentials (MTPs) from the MLIP-2 software package into PIMD calculations using the i-PI software package. This interface was then applied to active learning of potentials and to investigate the influence of NQEs on material properties, namely the temperature dependence of lattice parameters and thermal expansion coefficients, as well as radial distribution functions, for lithium hydride (LiH) and silicon (Si) systems. The results were compared with experimental data, quasi-harmonic approximation calculations, and predictions from the universal machine learning force field MatterSim. These comparisons demonstrated the high accuracy and effectiveness of the MTP-PIMD approach.
- Abstract(参考訳): 核量子効果(NQEs)の会計は、有限温度での材料特性を著しく変化させることができる。
パス積分分子動力学(PIMD)法による原子モデリングは、そのような効果を完全に説明できるが、計算的に効率的かつ正確な原子間相互作用モデルを必要とする。
経験的ポテンシャルは速いが十分正確性に欠けるが、量子力学計算は非常に正確だが計算コストが高い。
機械学習型原子間ポテンシャルは、密度汎関数理論(DFT)計算と比較して高い計算効率を維持しつつ、ほぼ量子-機械的精度を提供する。
この文脈では、MLIP-2ソフトウェアパッケージからのモーメントテンソルポテンシャル(MTP)をi-PIソフトウェアパッケージを使用したPIMD計算に統合するインタフェースが開発された。
この界面は、電位の能動的学習に応用され、NQEsが格子パラメータや熱膨張係数の温度依存性や、リチウム水和物(LiH)およびケイ素(Si)系の放射分布関数といった材料特性に与える影響を調べた。
その結果,実験データ,準調和近似計算,および汎用機械学習力場MatterSimの予測結果と比較した。
これらの結果から, MTP-PIMD法は高い精度と有効性を示した。
関連論文リスト
- Accurate Ab-initio Neural-network Solutions to Large-Scale Electronic Structure Problems [52.19558333652367]
有限範囲埋め込み(FiRE)を高精度なアブ・イニシアチブ電子構造計算に応用する。
FiREは、ニューラルネットワークの変異モンテカルロ(NN-VMC)の複雑さを$sim ntextel$, the number of electronsによって低減する。
バイオケミカル化合物や有機金属化合物など,様々な課題に対して,本手法の精度を検証した。
論文 参考訳(メタデータ) (2025-04-08T14:28:54Z) - Excited-state nonadiabatic dynamics in explicit solvent using machine learned interatomic potentials [0.602276990341246]
我々はFieldSchNetを用いてQM/MM静電埋め込みを、非断熱励起状態軌跡のML/MMに置き換える。
ML/MMモデルはQM/MM表面ホッピング参照シミュレーションの電子動力学と構造再構成を再現することを示した。
論文 参考訳(メタデータ) (2025-01-28T14:14:43Z) - Constructing accurate machine-learned potentials and performing highly efficient atomistic simulations to predict structural and thermal properties [6.875235178607604]
Ab initio molecular dynamics (AIMD) シミュレーションから生成されたデータセットに基づいて学習した神経進化電位(NEP)を導入する。
両方の機械学習ポテンシャルを用いて、状態(DOS)と放射分布関数(RDF)のフォノン密度を計算する。
MTP電位はわずかに精度が良いが、NEPは計算速度が41倍に向上する。
論文 参考訳(メタデータ) (2024-11-16T23:16:59Z) - Monte Carlo Neural PDE Solver for Learning PDEs via Probabilistic Representation [59.45669299295436]
教師なしニューラルソルバのトレーニングのためのモンテカルロPDEソルバを提案する。
我々は、マクロ現象をランダム粒子のアンサンブルとみなすPDEの確率的表現を用いる。
対流拡散, アレン・カーン, ナヴィエ・ストークス方程式に関する実験により, 精度と効率が著しく向上した。
論文 参考訳(メタデータ) (2023-02-10T08:05:19Z) - Accurate Machine Learned Quantum-Mechanical Force Fields for
Biomolecular Simulations [51.68332623405432]
分子動力学(MD)シミュレーションは、化学的および生物学的プロセスに関する原子論的な洞察を可能にする。
近年,MDシミュレーションの代替手段として機械学習力場(MLFF)が出現している。
本研究は、大規模分子シミュレーションのための正確なMLFFを構築するための一般的なアプローチを提案する。
論文 参考訳(メタデータ) (2022-05-17T13:08:28Z) - Computing molecular excited states on a D-Wave quantum annealer [52.5289706853773]
分子系の励起電子状態の計算にD波量子アニールを用いることを実証する。
これらのシミュレーションは、太陽光発電、半導体技術、ナノサイエンスなど、いくつかの分野で重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-07-01T01:02:17Z) - BIGDML: Towards Exact Machine Learning Force Fields for Materials [55.944221055171276]
機械学習力場(MLFF)は正確で、計算的で、データ効率が良く、分子、材料、およびそれらのインターフェースに適用できなければならない。
ここでは、Bravais-Inspired Gradient-Domain Machine Learningアプローチを導入し、わずか10-200原子のトレーニングセットを用いて、信頼性の高い力場を構築する能力を実証する。
論文 参考訳(メタデータ) (2021-06-08T10:14:57Z) - A Universal Framework for Featurization of Atomistic Systems [0.0]
物理や機械学習に基づく反応力場は、時間と長さのスケールのギャップを埋めるために使うことができる。
本稿では,原子周囲の電子密度の物理的に関連する多極展開を利用するガウス多極(GMP)デデュール化スキームを紹介する。
我々は,GMPに基づくモデルがQM9データセットの化学的精度を達成できることを示し,新しい要素を外挿してもその精度は妥当であることを示した。
論文 参考訳(メタデータ) (2021-02-04T03:11:00Z) - Microcanonical and finite temperature ab initio molecular dynamics
simulations on quantum computers [0.0]
Ab initio molecular dynamics (AIMD) は、分子および凝縮物質系の特性を予測する強力なツールである。
エネルギーと力の期待値の測定に関連する統計的ノイズを緩和するための解決策を提供する。
また, 常温, 常温, 動的シミュレーションのためのLangevin dynamicsアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-18T20:24:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。