Privacy-preserving Speech Emotion Recognition through Semi-Supervised
Federated Learning
- URL: http://arxiv.org/abs/2202.02611v1
- Date: Sat, 5 Feb 2022 18:30:23 GMT
- Title: Privacy-preserving Speech Emotion Recognition through Semi-Supervised
Federated Learning
- Authors: Vasileios Tsouvalas, Tanir Ozcelebi, Nirvana Meratnia
- Abstract summary: Speech Emotion Recognition (SER) refers to the recognition of human emotions from natural speech.
Existing SER approaches are largely centralized, without considering users' privacy.
We present a privacy-preserving and data-efficient SER approach by utilizing the concept of Federated Learning.
- Score: 0.8508198765617195
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Speech Emotion Recognition (SER) refers to the recognition of human emotions
from natural speech. If done accurately, it can offer a number of benefits in
building human-centered context-aware intelligent systems. Existing SER
approaches are largely centralized, without considering users' privacy.
Federated Learning (FL) is a distributed machine learning paradigm dealing with
decentralization of privacy-sensitive personal data. In this paper, we present
a privacy-preserving and data-efficient SER approach by utilizing the concept
of FL. To the best of our knowledge, this is the first federated SER approach,
which utilizes self-training learning in conjunction with federated learning to
exploit both labeled and unlabeled on-device data. Our experimental evaluations
on the IEMOCAP dataset shows that our federated approach can learn
generalizable SER models even under low availability of data labels and highly
non-i.i.d. distributions. We show that our approach with as few as 10% labeled
data, on average, can improve the recognition rate by 8.67% compared to the
fully-supervised federated counterparts.
Related papers
- Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation [22.151404603413752]
Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model.
Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution.
We develop a privacy preserving and communication efficient method in a FL framework with one-shot offline knowledge distillation.
arXiv Detail & Related papers (2022-09-10T05:20:31Z) - Practical Vertical Federated Learning with Unsupervised Representation
Learning [47.77625754666018]
Federated learning enables multiple parties to collaboratively train a machine learning model without sharing their raw data.
We propose a novel communication-efficient vertical federated learning algorithm named FedOnce, which requires only one-shot communication among parties.
Our privacy-preserving technique significantly outperforms the state-of-the-art approaches under the same privacy budget.
arXiv Detail & Related papers (2022-08-13T08:41:32Z) - Multimodal Emotion Recognition with Modality-Pairwise Unsupervised
Contrastive Loss [80.79641247882012]
We focus on unsupervised feature learning for Multimodal Emotion Recognition (MER)
We consider discrete emotions, and as modalities text, audio and vision are used.
Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature.
arXiv Detail & Related papers (2022-07-23T10:11:24Z) - Comparative assessment of federated and centralized machine learning [0.0]
Federated Learning (FL) is a privacy preserving machine learning scheme, where training happens with data federated across devices.
In this paper, we discuss the various factors that affect the federated learning training, because of the non-IID distributed nature of the data.
We show that federated learning does have an advantage in cost when the model sizes to be trained are not reasonably large.
arXiv Detail & Related papers (2022-02-03T11:20:47Z) - Attribute Inference Attack of Speech Emotion Recognition in Federated
Learning Settings [56.93025161787725]
Federated learning (FL) is a distributed machine learning paradigm that coordinates clients to train a model collaboratively without sharing local data.
We propose an attribute inference attack framework that infers sensitive attribute information of the clients from shared gradients or model parameters.
We show that the attribute inference attack is achievable for SER systems trained using FL.
arXiv Detail & Related papers (2021-12-26T16:50:42Z) - Privacy-preserving Decentralized Aggregation for Federated Learning [3.9323226496740733]
Federated learning is a promising framework for learning over decentralized data spanning multiple regions.
We develop a privacy-preserving decentralized aggregation protocol for federated learning.
We evaluate our algorithm on image classification and next-word prediction applications over benchmark datasets with 9 and 15 distributed sites.
arXiv Detail & Related papers (2020-12-13T23:45:42Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
In domains where data are sensitive or private, there is great value in methods that can learn in a distributed manner without the data ever leaving the local devices.
We propose Weight Anonymized Factorization for Federated Learning (WAFFLe), an approach that combines the Indian Buffet Process with a shared dictionary of weight factors for neural networks.
arXiv Detail & Related papers (2020-08-13T04:26:31Z) - FedOCR: Communication-Efficient Federated Learning for Scene Text
Recognition [76.26472513160425]
We study how to make use of decentralized datasets for training a robust scene text recognizer.
To make FedOCR fairly suitable to be deployed on end devices, we make two improvements including using lightweight models and hashing techniques.
arXiv Detail & Related papers (2020-07-22T14:30:50Z) - Multi-Center Federated Learning [62.57229809407692]
This paper proposes a novel multi-center aggregation mechanism for federated learning.
It learns multiple global models from the non-IID user data and simultaneously derives the optimal matching between users and centers.
Our experimental results on benchmark datasets show that our method outperforms several popular federated learning methods.
arXiv Detail & Related papers (2020-05-03T09:14:31Z) - Concentrated Differentially Private and Utility Preserving Federated
Learning [24.239992194656164]
Federated learning is a machine learning setting where a set of edge devices collaboratively train a model under the orchestration of a central server.
In this paper, we develop a federated learning approach that addresses the privacy challenge without much degradation on model utility.
We provide a tight end-to-end privacy guarantee of our approach and analyze its theoretical convergence rates.
arXiv Detail & Related papers (2020-03-30T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.