論文の概要: Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM
Model
- arxiv url: http://arxiv.org/abs/2202.02723v1
- Date: Sun, 6 Feb 2022 07:41:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 18:21:14.265639
- Title: Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM
Model
- Title(参考訳): LSTMモデルを用いたNIFTYテーマセクタ株のポートフォリオ最適化
- Authors: Jaydip Sen, Saikat Mondal, Sidra Mehtab
- Abstract要約: 本論文では,インドのNSEの5つのテーマセクターに対して,最適リスクと固有ポートフォリオを設計するためのアルゴリズム的アプローチを提案する。
株価は2016年1月1日から2020年12月31日までウェブから抽出される。
LSTMモデルは将来の株価を予測するために設計されている。
ポートフォリオが結成されて7ヶ月後の2021年8月3日、ポートフォリオの実際のリターンはLSTM予測リターンと比較される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Portfolio optimization has been a broad and intense area of interest for
quantitative and statistical finance researchers and financial analysts. It is
a challenging task to design a portfolio of stocks to arrive at the optimized
values of the return and risk. This paper presents an algorithmic approach for
designing optimum risk and eigen portfolios for five thematic sectors of the
NSE of India. The prices of the stocks are extracted from the web from Jan 1,
2016, to Dec 31, 2020. Optimum risk and eigen portfolios for each sector are
designed based on ten critical stocks from the sector. An LSTM model is
designed for predicting future stock prices. Seven months after the portfolios
were formed, on Aug 3, 2021, the actual returns of the portfolios are compared
with the LSTM-predicted returns. The predicted and the actual returns indicate
a very high-level accuracy of the LSTM model.
- Abstract(参考訳): ポートフォリオの最適化は、量的および統計学的金融研究者や金融アナリストにとって、広範かつ激しい関心の領域であった。
リターンとリスクの最適化された価値に到達するために、株式ポートフォリオを設計するのは困難なタスクです。
本論文では,インドのNSEの5つのテーマセクターに対して,最適リスクと固有ポートフォリオを設計するためのアルゴリズム的アプローチを提案する。
株価は2016年1月1日から2020年12月31日までウェブから引き上げられた。
各セクターの最適リスクポートフォリオと固有ポートフォリオは、セクターの10の重要株式に基づいて設計されている。
LSTMモデルは将来の株価を予測するために設計されている。
ポートフォリオが形成された7ヶ月後の2021年8月3日、ポートフォリオの実際のリターンはLSTM予測リターンと比較される。
予測および実際のリターンは、LSTMモデルの非常に高いレベルの精度を示す。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Performance Evaluation of Equal-Weight Portfolio and Optimum Risk
Portfolio on Indian Stocks [0.0]
ポートフォリオ設計に対する3つのアプローチは、リスクを最小化し、リスクを最適化し、ストックに等しい重量を割り当てる。
ポートフォリオは2017年1月1日から2022年12月31日までの株価に基づいて設計されている。
ポートフォリオのパフォーマンスを比較し、各セクターにより高いリターンをもたらすポートフォリオを特定する。
論文 参考訳(メタデータ) (2023-09-24T17:06:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen
Portfolio on the NIFTY 50 Stocks [1.5773159234875098]
本稿では,インド株式市場の7分野における階層的リスクパリティアルゴリズムと固有ポートフォリオという2つのアプローチを用いたポートフォリオ最適化の体系的アプローチを提案する。
ポートフォリオのバックテストの結果は、HRPポートフォリオのパフォーマンスが、調査されたセクターの大部分のトレーニングデータとテストデータの両方において、そのパフォーマンスよりも優れていることを示している。
論文 参考訳(メタデータ) (2022-10-03T14:51:24Z) - Precise Stock Price Prediction for Optimized Portfolio Design Using an
LSTM Model [1.1879716317856945]
インド経済の7つのセクターに基づいて最適化されたポートフォリオを提示する。
過去の株価は2016年1月1日から2020年12月31日までウェブから抽出される。
LSTM回帰モデルも将来の株価を予測するために設計されている。
論文 参考訳(メタデータ) (2022-03-02T14:37:30Z) - Robust Portfolio Design and Stock Price Prediction Using an Optimized
LSTM Model [0.0]
本稿では,インドにおける4つの重要な経済セクターに対して,最適リスクと固有という2つのタイプのポートフォリオを構築するための体系的なアプローチを提案する。
株価は2016年1月1日から2020年12月31日までウェブから抽出される。
LSTMモデルは将来の株価を予測するためにも設計されている。
論文 参考訳(メタデータ) (2022-03-02T14:15:14Z) - Stock Portfolio Optimization Using a Deep Learning LSTM Model [1.1470070927586016]
本研究は、2016年1月1日から2020年12月31日まで、インド株式市場の9つの異なるセクターからトップ5の株価を時系列的に分析してきた。
最適ポートフォリオはこれらのセクター毎に構築されます。
各ポートフォリオの予測と実際のリターンは高く,LSTMモデルの高精度性を示している。
論文 参考訳(メタデータ) (2021-11-08T18:41:49Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Reinforcement-Learning based Portfolio Management with Augmented Asset
Movement Prediction States [71.54651874063865]
ポートフォリオマネジメント(PM)は、最大利益や最小リスクといった投資目標を達成することを目的としている。
本稿では,PMのための新しいステート拡張RLフレームワークであるSARLを提案する。
当社の枠組みは, 金融PMにおける2つのユニークな課題に対処することを目的としている。(1) データの異種データ -- 資産毎の収集情報は通常, 多様性, ノイズ, 不均衡(ニュース記事など), (2) 環境の不確実性 -- 金融市場は多様で非定常である。
論文 参考訳(メタデータ) (2020-02-09T08:10:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。