CECILIA: Comprehensive Secure Machine Learning Framework
- URL: http://arxiv.org/abs/2202.03023v4
- Date: Wed, 16 Oct 2024 15:02:27 GMT
- Title: CECILIA: Comprehensive Secure Machine Learning Framework
- Authors: Ali Burak Ünal, Nico Pfeifer, Mete Akgün,
- Abstract summary: We propose a secure 3-party framework, CECILIA, offering PP building blocks to enable complex operations privately.
CECILIA also has two novel methods, which are the exact exponential of a public base raised to the power of a secret value and the inverse square root of a secret Gram matrix.
The framework shows a great promise to make other ML algorithms as well as further computations privately computable.
- Score: 2.949446809950691
- License:
- Abstract: Since ML algorithms have proven their success in many different applications, there is also a big interest in privacy preserving (PP) ML methods for building models on sensitive data. Moreover, the increase in the number of data sources and the high computational power required by those algorithms force individuals to outsource the training and/or the inference of a ML model to the clouds providing such services. To address this, we propose a secure 3-party computation framework, CECILIA, offering PP building blocks to enable complex operations privately. In addition to the adapted and common operations like addition and multiplication, it offers multiplexer, most significant bit and modulus conversion. The first two are novel in terms of methodology and the last one is novel in terms of both functionality and methodology. CECILIA also has two complex novel methods, which are the exact exponential of a public base raised to the power of a secret value and the inverse square root of a secret Gram matrix. We use CECILIA to realize the private inference on pre-trained RKNs, which require more complex operations than most other DNNs, on the structural classification of proteins as the first study ever accomplishing the PP inference on RKNs. In addition to the successful private computation of basic building blocks, the results demonstrate that we perform the exact and fully private exponential computation, which is done by approximation in the literature so far. Moreover, they also show that we compute the exact inverse square root of a secret Gram matrix up to a certain privacy level, which has not been addressed in the literature at all. We also analyze the scalability of CECILIA to various settings on a synthetic dataset. The framework shows a great promise to make other ML algorithms as well as further computations privately computable by the building blocks of the framework.
Related papers
- Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
Encrypted computation opens up promising avenues across a plethora of application domains.
In particular, Arithmetic homomorphic encryption is a natural fit for cloud-based computational services.
This paper presents an encrypted system identification service enabled by a reliable encrypted solution to at least squares problems.
arXiv Detail & Related papers (2024-10-27T20:00:04Z) - Secure and Efficient General Matrix Multiplication On Cloud Using Homomorphic Encryption [21.253885519048016]
Homomorphic Encryption (HE) has emerged as an effective tool in assuring privacy and security for sensitive applications.
One major obstacle to employing HE-based computation is its excessive computational cost.
arXiv Detail & Related papers (2024-05-03T16:50:02Z) - Privacy-aware Berrut Approximated Coded Computing for Federated Learning [1.2084539012992408]
We propose a solution to guarantee privacy in Federated Learning schemes.
Our proposal is based on the Berrut Approximated Coded Computing, adapted to a Secret Sharing configuration.
arXiv Detail & Related papers (2024-05-02T20:03:13Z) - A Weighted K-Center Algorithm for Data Subset Selection [70.49696246526199]
Subset selection is a fundamental problem that can play a key role in identifying smaller portions of the training data.
We develop a novel factor 3-approximation algorithm to compute subsets based on the weighted sum of both k-center and uncertainty sampling objective functions.
arXiv Detail & Related papers (2023-12-17T04:41:07Z) - Deep Active Ensemble Sampling For Image Classification [8.31483061185317]
Active learning frameworks aim to reduce the cost of data annotation by actively requesting the labeling for the most informative data points.
Some proposed approaches include uncertainty-based techniques, geometric methods, implicit combination of uncertainty-based and geometric approaches.
We present an innovative integration of recent progress in both uncertainty-based and geometric frameworks to enable an efficient exploration/exploitation trade-off in sample selection strategy.
Our framework provides two advantages: (1) accurate posterior estimation, and (2) tune-able trade-off between computational overhead and higher accuracy.
arXiv Detail & Related papers (2022-10-11T20:20:20Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - HD-cos Networks: Efficient Neural Architectures for Secure Multi-Party
Computation [26.67099154998755]
Multi-party computation (MPC) is a branch of cryptography where multiple non-colluding parties execute a protocol to securely compute a function.
We study training and inference of neural networks under the MPC setup.
We show that both of the approaches enjoy strong theoretical motivations and efficient computation under the MPC setup.
arXiv Detail & Related papers (2021-10-28T21:15:11Z) - A Graph Federated Architecture with Privacy Preserving Learning [48.24121036612076]
Federated learning involves a central processor that works with multiple agents to find a global model.
The current architecture of a server connected to multiple clients is highly sensitive to communication failures and computational overloads at the server.
We use cryptographic and differential privacy concepts to privatize the federated learning algorithm that we extend to the graph structure.
arXiv Detail & Related papers (2021-04-26T09:51:24Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
This paper applies learning to the two key sub-tasks of a MIP solver, generating a high-quality joint variable assignment, and bounding the gap in objective value between that assignment and an optimal one.
Our approach constructs two corresponding neural network-based components, Neural Diving and Neural Branching, to use in a base MIP solver such as SCIP.
We evaluate our approach on six diverse real-world datasets, including two Google production datasets and MIPLIB, by training separate neural networks on each.
arXiv Detail & Related papers (2020-12-23T09:33:11Z) - Tighter Generalization Bounds for Iterative Differentially Private
Learning Algorithms [95.73230376153872]
This paper studies the relationship between generalization and privacy preservation in iterative learning algorithms by two sequential steps.
We prove that $(varepsilon, delta)$-differential privacy implies an on-average generalization bound for multi-Database learning algorithms.
We then investigate how the iterative nature shared by most learning algorithms influence privacy preservation and further generalization.
arXiv Detail & Related papers (2020-07-18T09:12:03Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
Homomorphic Encryption (HE) is receiving more and more attention recently for its capability to do computations over the encrypted field.
We propose a novel general distributed HE-based data mining framework towards one step of solving the scaling problem.
We verify the efficiency and effectiveness of our new framework by testing over various data mining algorithms and benchmark data-sets.
arXiv Detail & Related papers (2020-06-17T18:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.