論文の概要: DEPTWEET: A Typology for Social Media Texts to Detect Depression
Severities
- arxiv url: http://arxiv.org/abs/2210.05372v1
- Date: Mon, 10 Oct 2022 08:23:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-12 15:46:07.689121
- Title: DEPTWEET: A Typology for Social Media Texts to Detect Depression
Severities
- Title(参考訳): DEPTWEET:うつ病を検知するソーシャルメディアテキストのタイポロジー
- Authors: Mohsinul Kabir, Tasnim Ahmed, Md. Bakhtiar Hasan, Md Tahmid Rahman
Laskar, Tarun Kumar Joarder, Hasan Mahmud, Kamrul Hasan
- Abstract要約: 我々はうつ病の重症度を検出するために,うつ病の臨床的記述を活用してソーシャルメディアテキストのタイプロジを構築する。
精神疾患の診断・統計マニュアル(DSM-5)と患者健康アンケート(PHQ-9)の標準的臨床評価手順をエミュレートする
専門家アノテータによってラベル付けされた40191ツイートの新しいデータセットを提示します。それぞれのツイートは、"non-depressed"あるいは"depressed"とラベル付けされます。
- 参考スコア(独自算出の注目度): 0.46796109436086664
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Mental health research through data-driven methods has been hindered by a
lack of standard typology and scarcity of adequate data. In this study, we
leverage the clinical articulation of depression to build a typology for social
media texts for detecting the severity of depression. It emulates the standard
clinical assessment procedure Diagnostic and Statistical Manual of Mental
Disorders (DSM-5) and Patient Health Questionnaire (PHQ-9) to encompass subtle
indications of depressive disorders from tweets. Along with the typology, we
present a new dataset of 40191 tweets labeled by expert annotators. Each tweet
is labeled as 'non-depressed' or 'depressed'. Moreover, three severity levels
are considered for 'depressed' tweets: (1) mild, (2) moderate, and (3) severe.
An associated confidence score is provided with each label to validate the
quality of annotation. We examine the quality of the dataset via representing
summary statistics while setting strong baseline results using attention-based
models like BERT and DistilBERT. Finally, we extensively address the
limitations of the study to provide directions for further research.
- Abstract(参考訳): データ駆動方式によるメンタルヘルス研究は、標準型の欠如と適切なデータの不足によって妨げられている。
本研究では,うつ病の重症度を検出するために,うつ病の臨床的記述を活用してソーシャルメディアテキストのタイプロジを構築する。
標準臨床評価手順の診断と精神障害の統計マニュアル(dsm-5)と患者健康アンケート(phq-9)をエミュレートし、ツイートからうつ病の兆候を微妙なものにする。
タイポロジーとともに,エキスパート・アノテータがラベル付けした40191ツイートの新しいデータセットを提案する。
各ツイートは "non-depressed" または "depressed" とラベル付けされる。
また,「抑うつ」ツイートには,(1)軽度,(2)中等度,(3)重度という3つの重大度が考慮される。
各ラベルには関連する信頼スコアが付与され、アノテーションの品質が検証される。
本稿では,BERT や DistilBERT などの注目モデルを用いて,データセットの品質を,要約統計を表現しながら評価する。
最後に,研究の限界を広く取り上げ,さらなる研究の方向性を示す。
関連論文リスト
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
メンタルヘルス障害は世界で最も深刻な病気の1つである。
プライバシーに関する懸念は、パーソナライズされた治療データのアクセシビリティを制限する。
MentalArenaは、言語モデルをトレーニングするためのセルフプレイフレームワークである。
論文 参考訳(メタデータ) (2024-10-09T13:06:40Z) - A BERT-Based Summarization approach for depression detection [1.7363112470483526]
うつ病は世界中で流行する精神疾患であり、対処されないと深刻な反感を引き起こす可能性がある。
機械学習と人工知能は、さまざまなデータソースからのうつ病指標を自律的に検出することができる。
本研究では,入力テキストの長さと複雑さを低減させる前処理手法として,テキスト要約を提案する。
論文 参考訳(メタデータ) (2024-09-13T02:14:34Z) - LLM Questionnaire Completion for Automatic Psychiatric Assessment [49.1574468325115]
大規模言語モデル(LLM)を用いて、非構造的心理面接を、様々な精神科領域と人格領域にまたがる構造化された質問票に変換する。
得られた回答は、うつ病の標準化された精神医学的指標(PHQ-8)とPTSD(PCL-C)の予測に使用される特徴として符号化される。
論文 参考訳(メタデータ) (2024-06-09T09:03:11Z) - Your Model Is Not Predicting Depression Well And That Is Why: A Case
Study of PRIMATE Dataset [0.0]
ソーシャルメディアのテキストからNLPに基づく抑うつレベル推定に使用されるメンタルヘルスデータセットのアノテーションの品質について検討する。
本研究は,アノテーションの妥当性,特に関心の欠如や快楽症状に対する懸念を明らかにする。
Data Use Agreementの下でリリースされる当社の洗練されたアノテーションは、アンヘドニア検出のための高品質なテストセットを提供します。
論文 参考訳(メタデータ) (2024-03-01T10:47:02Z) - What Symptoms and How Long? An Interpretable AI Approach for Depression
Detection in Social Media [0.5156484100374058]
うつ病は最も一般的で深刻な精神疾患であり、重大な財政的・社会的影響をもたらす。
本研究は、ソーシャルメディアにおける抑うつ検出のための新しい解釈可能な深層学習モデルを用いて、IS文献に寄与する。
論文 参考訳(メタデータ) (2023-05-18T20:15:04Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
ソーシャルメディア投稿からの抑うつ検出のための奥深いアーキテクチャを提案する。
我々は、後期融合方式を用いて、ポストとワードの敬称と道徳的特徴をアーキテクチャに組み込んだ。
提案された機能を含めると、両方の設定で最先端の結果が得られます。
論文 参考訳(メタデータ) (2023-03-24T21:26:27Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
精神健康に対する短期的コビデンスの影響は、不安や抑うつ症状の顕著な増加であった。
本研究の目的は、健康な人とうつ病患者を識別するために、オンライン手書き・図面解析という新しいツールを使用することである。
論文 参考訳(メタデータ) (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
本稿では、ソーシャルメディアの文章に基づいて、個人のうつ病の重症度を研究するための効率的なセマンティックパイプラインを提案する。
我々は,抑うつ症状と重度レベルに対応する代表訓練文の指標に対して意味的ランキングを生成するために,テストユーザ文を使用する。
本手法を2つのRedditベースのベンチマークで評価し,うつ病の重症度を指標として,最先端技術よりも30%改善した。
論文 参考訳(メタデータ) (2022-11-14T18:47:26Z) - DECK: Behavioral Tests to Improve Interpretability and Generalizability
of BERT Models Detecting Depression from Text [4.269268432906194]
テキストからうつ病を正確に検出するモデルは、パンデミック後の精神疾患に対処するための重要なツールである。
BERTベースの分類器の有望な性能と市販の可用性は、このタスクの優れた候補となる。
DeCK(Depression ChecKlist)は、抑うつ特異的なモデル行動テストで、より優れた解釈性を実現する。
論文 参考訳(メタデータ) (2022-09-12T14:39:46Z) - Data set creation and empirical analysis for detecting signs of
depression from social media postings [0.0]
うつ病は、深刻な結果を避けるために、早期に検出され治療されなければならない一般的な精神疾患である。
我々は、ソーシャルメディアの投稿から、うつ病のレベルが落ち込んでいないこと、中程度に落ち込んでいないこと、および深刻な落ち込んでいないことを検知する、金の標準データセットを開発した。
論文 参考訳(メタデータ) (2022-02-07T10:24:33Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
うつ病は最も多い精神疾患の1つであり、世界中の年齢の何百万人もの人々に影響を与えている。
機械学習技術は、早期介入と治療のためのうつ病の自動検出と予測を可能にしている。
本稿では、この課題に対処するために、2つの補助的タスクでうつ病分類を共同最適化する、新しいディープマルチタスクリカレントニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-05T05:14:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。