Comparative Study of Machine Learning Models for Stock Price Prediction
- URL: http://arxiv.org/abs/2202.03156v1
- Date: Mon, 31 Jan 2022 17:16:27 GMT
- Title: Comparative Study of Machine Learning Models for Stock Price Prediction
- Authors: Ogulcan E. Orsel, Sasha S. Yamada
- Abstract summary: We apply machine learning techniques to historical stock prices to forecast future prices.
We quantify the results by computing the error of the predicted values versus the historical values of each stock.
This method could be used to automate portfolio generation for a target return rate.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we apply machine learning techniques to historical stock prices
to forecast future prices. To achieve this, we use recursive approaches that
are appropriate for handling time series data. In particular, we apply a linear
Kalman filter and different varieties of long short-term memory (LSTM)
architectures to historical stock prices over a 10-year range (1/1/2011 -
1/1/2021). We quantify the results of these models by computing the error of
the predicted values versus the historical values of each stock. We find that
of the algorithms we investigated, a simple linear Kalman filter can predict
the next-day value of stocks with low-volatility (e.g., Microsoft) surprisingly
well. However, in the case of high-volatility stocks (e.g., Tesla) the more
complex LSTM algorithms significantly outperform the Kalman filter. Our results
show that we can classify different types of stocks and then train an LSTM for
each stock type. This method could be used to automate portfolio generation for
a target return rate.
Related papers
- Benchmarking Post-Training Quantization in LLMs: Comprehensive Taxonomy, Unified Evaluation, and Comparative Analysis [89.60263788590893]
Post-training Quantization (PTQ) technique has been extensively adopted for large language models (LLMs) compression.
Existing algorithms focus primarily on performance, overlooking the trade-off among model size, performance, and quantization bitwidth.
We provide a novel benchmark for LLMs PTQ in this paper.
arXiv Detail & Related papers (2025-02-18T07:35:35Z) - Time Series Stock Price Forecasting Based on Genetic Algorithm (GA)-Long Short-Term Memory Network (LSTM) Optimization [0.0]
A time series algorithm based on Genetic Algorithm (GA) and Long Short-Term Memory Network (LSTM) is used to forecast stock prices effectively.
The results on the test set show that the time series algorithm optimized based on Genetic Algorithm (GA)-Long Short-Term Memory Network (LSTM) is able to accurately predict the stock prices.
arXiv Detail & Related papers (2024-05-06T04:04:27Z) - A Study on Stock Forecasting Using Deep Learning and Statistical Models [3.437407981636465]
This paper will review many deep learning algorithms for stock price forecasting. We use a record of s&p 500 index data for training and testing.
It will discuss various models, including the Auto regression integration moving average model, the Recurrent neural network model, the long short-term model, the convolutional neural network model, and the full convolutional neural network model.
arXiv Detail & Related papers (2024-02-08T16:45:01Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Deep Generative model with Hierarchical Latent Factors for Time Series
Anomaly Detection [40.21502451136054]
This work presents DGHL, a new family of generative models for time series anomaly detection.
A top-down Convolution Network maps a novel hierarchical latent space to time series windows, exploiting temporal dynamics to encode information efficiently.
Our method outperformed current state-of-the-art models on four popular benchmark datasets.
arXiv Detail & Related papers (2022-02-15T17:19:44Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Learning Multiple Stock Trading Patterns with Temporal Routing Adaptor
and Optimal Transport [8.617532047238461]
We propose a novel architecture, Temporal Adaptor (TRA), to empower existing stock prediction models with the ability to model multiple stock trading patterns.
TRA is a lightweight module that consists of a set independent predictors for learning multiple patterns as well as a router to dispatch samples to different predictors.
We show that the proposed method can improve information coefficient (IC) from 0.053 to 0.059 and 0.051 to 0.056 respectively.
arXiv Detail & Related papers (2021-06-24T12:19:45Z) - Robust Analysis of Stock Price Time Series Using CNN and LSTM-Based Deep
Learning Models [0.0]
We present a suite of deep learning-based regression models that yields a very high level of accuracy in stock price prediction.
We build four convolutional neural network (CNN) and five long- and short-term memory (LSTM)-based deep learning models for accurate forecasting of the future stock prices.
arXiv Detail & Related papers (2020-11-07T16:07:10Z) - Rainfall-Runoff Prediction at Multiple Timescales with a Single Long
Short-Term Memory Network [41.33870234564485]
Long Short-Term Memory Networks (LSTMs) have been applied to daily discharge prediction with remarkable success.
Many practical scenarios, however, require predictions at more granular timescales.
In this study, we propose two Multi-Timescale LSTM (MTS-LSTM) architectures that jointly predict multiple timescales within one model.
We test these models on 516 basins across the continental United States and benchmark against the US National Water Model.
arXiv Detail & Related papers (2020-10-15T17:52:16Z) - Stock2Vec: A Hybrid Deep Learning Framework for Stock Market Prediction
with Representation Learning and Temporal Convolutional Network [71.25144476293507]
We have proposed to develop a global hybrid deep learning framework to predict the daily prices in the stock market.
With representation learning, we derived an embedding called Stock2Vec, which gives us insight for the relationship among different stocks.
Our hybrid framework integrates both advantages and achieves better performance on the stock price prediction task than several popular benchmarked models.
arXiv Detail & Related papers (2020-09-29T22:54:30Z) - Deep Stock Predictions [58.720142291102135]
We consider the design of a trading strategy that performs portfolio optimization using Long Short Term Memory (LSTM) neural networks.
We then customize the loss function used to train the LSTM to increase the profit earned.
We find the LSTM model with the customized loss function to have an improved performance in the training bot over a regressive baseline such as ARIMA.
arXiv Detail & Related papers (2020-06-08T23:37:47Z) - A Time Series Analysis-Based Stock Price Prediction Using Machine
Learning and Deep Learning Models [0.0]
We present a very robust and accurate framework of stock price prediction that consists of an agglomeration of statistical, machine learning and deep learning models.
We use the daily stock price data, collected at five minutes interval of time, of a very well known company that is listed in the National Stock Exchange (NSE) of India.
We contend that the agglomerative approach of model building that uses a combination of statistical, machine learning, and deep learning approaches, can very effectively learn from the volatile and random movement patterns in a stock price data.
arXiv Detail & Related papers (2020-04-17T19:41:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.