論文の概要: Reinforcement learning for multi-item retrieval in the puzzle-based
storage system
- arxiv url: http://arxiv.org/abs/2202.03424v1
- Date: Sat, 5 Feb 2022 12:39:21 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 15:01:42.241257
- Title: Reinforcement learning for multi-item retrieval in the puzzle-based
storage system
- Title(参考訳): パズル型記憶システムにおける複数項目検索のための強化学習
- Authors: Jing He, Xinglu Liu, Qiyao Duan, Wai Kin Victor Chan, Mingyao Qi
- Abstract要約: 本研究は,パズルベースの記憶システムにおける多項目検索問題の解法として,深層強化学習アルゴリズムを開発した。
大規模な数値実験により、強化学習アプローチによって高品質な解が得られることが示された。
同時動作と大規模インスタンスを扱うために,変換アルゴリズムと分解フレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.694936386455667
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Nowadays, fast delivery services have created the need for high-density
warehouses. The puzzle-based storage system is a practical way to enhance the
storage density, however, facing difficulties in the retrieval process. In this
work, a deep reinforcement learning algorithm, specifically the Double&Dueling
Deep Q Network, is developed to solve the multi-item retrieval problem in the
system with general settings, where multiple desired items, escorts, and I/O
points are placed randomly. Additionally, we propose a general compact integer
programming model to evaluate the solution quality. Extensive numerical
experiments demonstrate that the reinforcement learning approach can yield
high-quality solutions and outperforms three related state-of-the-art heuristic
algorithms. Furthermore, a conversion algorithm and a decomposition framework
are proposed to handle simultaneous movement and large-scale instances
respectively, thus improving the applicability of the PBS system.
- Abstract(参考訳): 今日では、高速配送サービスが高密度倉庫の必要性を生み出している。
パズルベースの記憶システムは,検索プロセスの困難に直面しながら,記憶密度を高めるための実用的な方法である。
本研究では,複数の所望アイテム,エスコート,I/Oポイントをランダムに配置するシステムにおいて,多項目検索問題を解決するために,深層強化学習アルゴリズム,特にDouble&Dueling Deep Q Networkを開発した。
さらに,解の質を評価するための汎用コンパクト整数プログラミングモデルを提案する。
広範な数値実験により、強化学習アプローチは高品質な解を生み出し、関連する3つの最先端ヒューリスティックアルゴリズムを上回ることが示されている。
さらに,同時移動と大規模インスタンスを処理するために,変換アルゴリズムと分解フレームワークを提案し,pbsシステムの適用性が向上した。
関連論文リスト
- Spatial-temporal-demand clustering for solving large-scale vehicle
routing problems with time windows [0.0]
本稿では,クラスタリングを用いて顧客をグループ化するDRI(Decompose-route-improve)フレームワークを提案する。
その類似度基準は、顧客の空間的、時間的、需要データを含む。
本研究では,解答サブプロブレム間でプルーンド局所探索(LS)を適用し,全体の解法を改善する。
論文 参考訳(メタデータ) (2024-01-20T06:06:01Z) - Scalable Batch Acquisition for Deep Bayesian Active Learning [70.68403899432198]
ディープラーニングでは、各ステップでマークアップする複数の例を選択することが重要です。
BatchBALDのような既存のソリューションでは、多くの例を選択する際に大きな制限がある。
本稿では,より計算効率のよいLarge BatchBALDアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-13T11:45:17Z) - A machine learning framework for neighbor generation in metaheuristic
search [4.521119623956821]
メタヒューリスティック検索における近隣世代のための汎用機械学習フレームワークを提案する。
メタヒューリスティックな2つの応用法について検証する。
論文 参考訳(メタデータ) (2022-12-22T01:58:04Z) - Multi-Resource Allocation for On-Device Distributed Federated Learning
Systems [79.02994855744848]
本研究は,デバイス上の分散フェデレーション学習(FL)システムにおいて,レイテンシとエネルギー消費の重み付け和を最小化する分散マルチリソース割り当て方式を提案する。
システム内の各モバイルデバイスは、指定された領域内でモデルトレーニングプロセスを実行し、それぞれパラメータの導出とアップロードを行うための計算と通信資源を割り当てる。
論文 参考訳(メタデータ) (2022-11-01T14:16:05Z) - Learning to Optimize Permutation Flow Shop Scheduling via Graph-based
Imitation Learning [70.65666982566655]
置換フローショップスケジューリング(PFSS)は製造業で広く使われている。
我々は,より安定かつ正確に収束を加速する専門家主導の模倣学習を通じてモデルを訓練することを提案する。
我々のモデルのネットワークパラメータはわずか37%に減少し、エキスパートソリューションに対する我々のモデルの解のギャップは平均6.8%から1.3%に減少する。
論文 参考訳(メタデータ) (2022-10-31T09:46:26Z) - Simulation-guided Beam Search for Neural Combinatorial Optimization [13.072343634530883]
ニューラル最適化問題に対するシミュレーション誘導ビームサーチ(SGBS)を提案する。
我々は、SGBSと効率的なアクティブサーチ(EAS)を併用し、SGBSはEASでバックプロパゲーションされたソリューションの品質を高める。
提案手法をよく知られたCOベンチマークで評価し,SGBSが合理的な仮定で得られた解の質を著しく向上することを示す。
論文 参考訳(メタデータ) (2022-07-13T13:34:35Z) - Adaptive Discretization in Online Reinforcement Learning [9.560980936110234]
離散化に基づくアルゴリズムを設計する際の2つの大きな疑問は、離散化をどのように生成し、いつそれを洗練するかである。
オンライン強化学習のための木に基づく階層分割手法の統一的理論的解析を行う。
我々のアルゴリズムは操作制約に容易に適応し、我々の理論は3つの面のそれぞれに明示的な境界を与える。
論文 参考訳(メタデータ) (2021-10-29T15:06:15Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - SUNRISE: A Simple Unified Framework for Ensemble Learning in Deep
Reinforcement Learning [102.78958681141577]
SUNRISEは単純な統一アンサンブル法であり、様々な非政治的な深層強化学習アルゴリズムと互換性がある。
SUNRISEは, (a) アンサンブルに基づく重み付きベルマンバックアップと, (b) 最上位の自信境界を用いて行動を選択する推論手法を統合し, 効率的な探索を行う。
論文 参考訳(メタデータ) (2020-07-09T17:08:44Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。