論文の概要: A Random-Key Optimizer for Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2411.04293v2
- Date: Fri, 15 Nov 2024 22:04:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:29:34.840822
- Title: A Random-Key Optimizer for Combinatorial Optimization
- Title(参考訳): 組合せ最適化のためのランダム鍵最適化器
- Authors: Antonio A. Chaves, Mauricio G. C. Resende, Martin J. A. Schuetz, J. Kyle Brubaker, Helmut G. Katzgraber, Edilson F. de Arruda, Ricardo M. A. Silva,
- Abstract要約: Random-Key Hubs (RKO) は最適化問題に適した汎用的で効率的な局所探索手法である。
ランダムキーの概念を用いて、RKOは解をランダムキーのベクトルとしてエンコードし、後に問題固有のデコーダを介して実現可能な解へとデコードする。
RKOフレームワークは古典的メタヒューリスティクスの多元体を組み合わせ、それぞれが独立して、あるいは並列に動作可能であり、エリートソリューションプールを通じてソリューション共有が促進される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents the Random-Key Optimizer (RKO), a versatile and efficient stochastic local search method tailored for combinatorial optimization problems. Using the random-key concept, RKO encodes solutions as vectors of random keys that are subsequently decoded into feasible solutions via problem-specific decoders. The RKO framework is able to combine a plethora of classic metaheuristics, each capable of operating independently or in parallel, with solution sharing facilitated through an elite solution pool. This modular approach allows for the adaptation of various metaheuristics, including simulated annealing, iterated local search, and greedy randomized adaptive search procedures, among others. The efficacy of the RKO framework, implemented in C++, is demonstrated through its application to three NP-hard combinatorial optimization problems: the alpha-neighborhood p-median problem, the tree of hubs location problem, and the node-capacitated graph partitioning problem. The results highlight the framework's ability to produce high-quality solutions across diverse problem domains, underscoring its potential as a robust tool for combinatorial optimization.
- Abstract(参考訳): 本稿では,組合せ最適化問題に適した確率的局所探索法であるランダム鍵最適化器(RKO)を提案する。
ランダムキーの概念を用いて、RKOは解をランダムキーのベクトルとしてエンコードし、後に問題固有のデコーダを介して実現可能な解へとデコードする。
RKOフレームワークは古典的メタヒューリスティクスの多元体を組み合わせ、それぞれが独立して、あるいは並列に動作可能であり、エリートソリューションプールを通じてソリューション共有が促進される。
このモジュラーアプローチにより、シミュレートアニール、反復局所探索、グリーディランダム適応探索など、様々なメタヒューリスティクスの適応が可能となる。
C++で実装されたRKOフレームワークの有効性は、アルファ近傍のp中間問題、ハブ位置問題ツリー、ノード容量グラフ分割問題という3つのNPハード組合せ最適化問題に適用することで実証される。
この結果は、様々な問題領域にまたがる高品質なソリューションを作成できるフレームワークの能力を強調し、組み合わせ最適化のための堅牢なツールとしての可能性を強調している。
関連論文リスト
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - ALEXR: An Optimal Single-Loop Algorithm for Convex Finite-Sum Coupled Compositional Stochastic Optimization [53.14532968909759]
ALEXRと呼ばれる,効率的な単ループプリマルデュアルブロックコーディネートアルゴリズムを提案する。
本研究では, ALEXR の凸面および強凸面の収束速度を滑らか性および非滑らか性条件下で確立する。
本稿では,ALEXRの収束速度が,検討されたcFCCO問題に対する1次ブロック座標アルゴリズムの中で最適であることを示すために,より低い複雑性境界を示す。
論文 参考訳(メタデータ) (2023-12-04T19:00:07Z) - An Expandable Machine Learning-Optimization Framework to Sequential
Decision-Making [0.0]
逐次的意思決定問題を効率的に解決する統合予測最適化(PredOpt)フレームワークを提案する。
本稿では,機械学習(ML)における逐次依存,実現可能性,一般化といった課題に対処し,インスタンス問題に対する最適解の予測を行う。
論文 参考訳(メタデータ) (2023-11-12T21:54:53Z) - Let the Flows Tell: Solving Graph Combinatorial Optimization Problems
with GFlowNets [86.43523688236077]
組合せ最適化(CO)問題はしばしばNPハードであり、正確なアルゴリズムには及ばない。
GFlowNetsは、複合非正規化密度を逐次サンプリングする強力な機械として登場した。
本稿では,異なる問題に対してマルコフ決定プロセス(MDP)を設計し,条件付きGFlowNetを学習して解空間からサンプルを作成することを提案する。
論文 参考訳(メタデータ) (2023-05-26T15:13:09Z) - Optimization of Robot Trajectory Planning with Nature-Inspired and
Hybrid Quantum Algorithms [0.0]
産業規模でロボット軌道計画問題を解く。
我々のエンドツーエンドソリューションは、高度に多目的なランダムキーアルゴリズムとモデル積み重ねとアンサンブル技術を統合している。
我々は、後者が我々のより大きなパイプラインにどのように統合され、問題に対する量子対応ハイブリッドソリューションを提供するかを示す。
論文 参考訳(メタデータ) (2022-06-08T02:38:32Z) - Combining Particle Swarm Optimizer with SQP Local Search for Constrained
Optimization Problems [0.0]
先行するアルゴリズムの違いは局所的な検索能力にある可能性が示唆された。
ベンチマークスイートの他のリードと比較すると、他の主要なPSOアルゴリズムと競合するようにローカル検索を実装したGP-PSOのハイブリッドが示される。
論文 参考訳(メタデータ) (2021-01-25T09:34:52Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Constrained Combinatorial Optimization with Reinforcement Learning [0.30938904602244344]
本稿では,RL(Deep Reinforcement Learning)を用いた制約付き最適化問題に対処する枠組みを提案する。
我々は、その定式化における制約に対処するために、Neural Combinatorial Optimization(NCO)理論を拡張した。
その文脈では、ソリューションは環境との相互作用に基づいて反復的に構築されます。
論文 参考訳(メタデータ) (2020-06-22T03:13:07Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z) - Quantum approximate algorithm for NP optimization problems with
constraints [12.294570891467604]
本稿では,異なる制約型を等式,線形不等式,任意の形式に定式化する。
そこで本研究では,NP最適化問題の解法としてQAOAフレームワークに適合する制約符号化方式を提案する。
提案手法の有効性と有効性を示す。
論文 参考訳(メタデータ) (2020-02-01T04:45:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。