Universal logic with encoded spin qubits in silicon
- URL: http://arxiv.org/abs/2202.03605v1
- Date: Tue, 8 Feb 2022 02:23:46 GMT
- Title: Universal logic with encoded spin qubits in silicon
- Authors: Aaron J. Weinstein, Matthew D. Reed, Aaron M. Jones, Reed W. Andrews,
David Barnes, Jacob Z. Blumoff, Larken E. Euliss, Kevin Eng, Bryan Fong, Sieu
D. Ha, Daniel R. Hulbert, Clayton Jackson, Michael Jura, Tyler E. Keating,
Joseph Kerckhoff, Andrey A. Kiselev, Justine Matten, Golam Sabbir, Aaron
Smith, Jeffrey Wright, Matthew T. Rakher, Thaddeus D. Ladd and Matthew G.
Borselli
- Abstract summary: Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing.
Key difficulties are that encoded entangling gates require a large number of control pulses and high-yielding quantum dot arrays.
Here we show a device made using the single-layer etch-defined gate architecture that achieves both the required functional yield needed for full control and the coherence necessary for thousands of exchange pulses to be applied.
- Score: 1.5796098351442824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Qubits encoded in a decoherence-free subsystem and realized in
exchange-coupled silicon quantum dots are promising candidates for
fault-tolerant quantum computing. Benefits of this approach include excellent
coherence, low control crosstalk, and configurable insensitivity to certain
error sources. Key difficulties are that encoded entangling gates require a
large number of control pulses and high-yielding quantum dot arrays. Here we
show a device made using the single-layer etch-defined gate electrode
architecture that achieves both the required functional yield needed for full
control and the coherence necessary for thousands of calibrated exchange pulses
to be applied. We measure an average two-qubit Clifford fidelity of $97.1 \pm
0.2\%$ with randomized benchmarking. We also use interleaved randomized
benchmarking to demonstrate the controlled-NOT gate with $96.3 \pm 0.7\%$
fidelity, SWAP with $99.3 \pm 0.5\%$ fidelity, and a specialized entangling
gate that limits spreading of leakage with $93.8 \pm 0.7\%$ fidelity.
Related papers
- Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Quantum control landscape for generation of $H$ and $T$ gates in an open
qubit with both coherent and environmental drive [57.70351255180495]
An important problem in quantum computation is generation of single-qubit quantum gates such as Hadamard ($H$) and $pi/8$ ($T$)
Here we consider the problem of optimal generation of $H$ and $T$ gates using coherent control and the environment as a resource acting on the qubit via incoherent control.
arXiv Detail & Related papers (2023-09-05T09:05:27Z) - Fast, tunable, high fidelity cZ-gates between superconducting qubits with parametric microwave control of ZZ-coupling [0.0]
We present a highly flexible parametric coupling scheme with superconducting qubits.
Our fully integrated, 2D on-chip coupler design is only weakly flux tunable.
benchmarking reveals that the parametric SWAP c$Z$ gate achieves an average fidelity of $99.44pm 0.09$% in a gate duration of 70ns.
arXiv Detail & Related papers (2023-05-04T15:14:56Z) - Robustness of a universal gate set implementation in transmon systems
via Chopped Random Basis optimal control [50.591267188664666]
We numerically study the implementation of a universal two-qubit gate set, composed of CNOT, Hadamard, phase and $pi/8$ gates, for transmon-based systems.
The control signals to implement such gates are obtained using the Chopped Random Basis optimal control technique, with a target gate infidelity of $10-2$.
arXiv Detail & Related papers (2022-07-27T10:55:15Z) - Fast universal quantum control above the fault-tolerance threshold in
silicon [0.0]
Electron spin qubits in silicon are particularly promising for a large-scale quantum computer due to their nanofabrication capability.
Here we demonstrate a two-qubit gate fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per cent.
Our results demonstrate the universal gate fidelity beyond the fault-tolerance threshold and pave the way for scalable silicon quantum computers.
arXiv Detail & Related papers (2021-08-05T14:02:58Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Experimental implementation of non-Clifford interleaved randomized
benchmarking with a controlled-S gate [0.1759008116536278]
In some applications access to a non-Clifford two-qubit gate can result in more optimal circuit decompositions.
We demonstrate calibration of a low error non-Clifford Controlled-$fracpi2$ phase (CS) gate on a cloud based IBM Quantum computing.
arXiv Detail & Related papers (2020-07-16T18:00:02Z) - Benchmarking the noise sensitivity of different parametric two-qubit
gates in a single superconducting quantum computing platform [0.0]
A larger hardware-native gate set may decrease the number of required gates, provided that all gates are realized with high fidelity.
We benchmark both controlled-Z (CZ) and exchange-type (iSWAP) gates using a parametrically driven tunable coupler.
We argue that spurious $ZZ$-type couplings are the dominant error source for the iSWAP gate.
arXiv Detail & Related papers (2020-05-12T11:38:41Z) - Qiskit Pulse: Programming Quantum Computers Through the Cloud with
Pulses [1.7155215269885755]
We introduce Qiskit Pulse, a pulse-level programming paradigm implemented as a module within Qiskit-Terra citeQiskit.
We calibrate both un-echoed and echoed variants of the cross-resonance entangling gate with a pair of qubits on an IBM Quantum system accessible through the cloud.
arXiv Detail & Related papers (2020-04-14T19:03:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.