Fast universal quantum control above the fault-tolerance threshold in
silicon
- URL: http://arxiv.org/abs/2108.02626v2
- Date: Tue, 10 Aug 2021 14:09:41 GMT
- Title: Fast universal quantum control above the fault-tolerance threshold in
silicon
- Authors: Akito Noiri, Kenta Takeda, Takashi Nakajima, Takashi Kobayashi, Amir
Sammak, Giordano Scappucci, Seigo Tarucha
- Abstract summary: Electron spin qubits in silicon are particularly promising for a large-scale quantum computer due to their nanofabrication capability.
Here we demonstrate a two-qubit gate fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per cent.
Our results demonstrate the universal gate fidelity beyond the fault-tolerance threshold and pave the way for scalable silicon quantum computers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault-tolerant quantum computers which can solve hard problems rely on
quantum error correction. One of the most promising error correction codes is
the surface code, which requires universal gate fidelities exceeding the error
correction threshold of 99 per cent. Among many qubit platforms, only
superconducting circuits, trapped ions, and nitrogen-vacancy centers in diamond
have delivered those requirements. Electron spin qubits in silicon are
particularly promising for a large-scale quantum computer due to their
nanofabrication capability, but the two-qubit gate fidelity has been limited to
98 per cent due to the slow operation.Here we demonstrate a two-qubit gate
fidelity of 99.5 per cent, along with single-qubit gate fidelities of 99.8 per
cent, in silicon spin qubits by fast electrical control using a
micromagnet-induced gradient field and a tunable two-qubit coupling. We
identify the condition of qubit rotation speed and coupling strength where we
robustly achieve high-fidelity gates. We realize Deutsch-Jozsa and Grover
search algorithms with high success rates using our universal gate set. Our
results demonstrate the universal gate fidelity beyond the fault-tolerance
threshold and pave the way for scalable silicon quantum computers.
Related papers
- Universal high-fidelity quantum gates for spin-qubits in diamond [0.0]
Recent experiments have demonstrated multi-qubit quantum processors, optical interconnects, and basic quantum error correction protocols.
One of the key open challenges towards larger-scale systems is to realize high-fidelity universal quantum gates.
We design and demonstrate a complete high-fidelity gate set for the two-qubit system formed by the electron and nuclear spin of a nitrogen-vacancy center in diamond.
arXiv Detail & Related papers (2024-03-15T19:00:02Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Hamiltonian Phase Error in Resonantly Driven CNOT Gate Above the
Fault-Tolerant Threshold [0.0]
electron spin qubits are a promising platform for scalable quantum processors.
A full-fledged quantum computer will need quantum error correction, which requires high-fidelity quantum gates.
We demonstrate a simple yet reliable calibration procedure for a high-fidelity controlled-rotation gate in an exchange-always-on Silicon quantum processor.
arXiv Detail & Related papers (2023-07-18T07:44:00Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Universal logic with encoded spin qubits in silicon [1.5796098351442824]
Qubits encoded in a decoherence-free subsystem and realized in exchange-coupled silicon quantum dots are promising candidates for fault-tolerant quantum computing.
Key difficulties are that encoded entangling gates require a large number of control pulses and high-yielding quantum dot arrays.
Here we show a device made using the single-layer etch-defined gate architecture that achieves both the required functional yield needed for full control and the coherence necessary for thousands of exchange pulses to be applied.
arXiv Detail & Related papers (2022-02-08T02:23:46Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Computing with spin qubits at the surface code error threshold [1.2049205598273507]
We report a spin-based quantum processor in silicon with single- and two-qubit gate fidelities above 99.5%.
We execute the demanding task of calculating molecular ground state energies using a variational quantum eigensolver algorithm.
arXiv Detail & Related papers (2021-07-01T17:35:01Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Path-encoded high-dimensional quantum communication over a 2 km
multicore fiber [50.591267188664666]
We demonstrate the reliable transmission over a 2 km long multicore fiber of path-encoded high-dimensional quantum states.
A stable interferometric detection is guaranteed, allowing for low error rates and the generation of 6.3 Mbit/s of secret key rate.
arXiv Detail & Related papers (2021-03-10T11:02:45Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
encode and decode circuits to reliably send messages over many uses of a noisy channel.
For every quantum channel $T$ and every $eps>0$ there exists a threshold $p(epsilon,T)$ for the gate error probability below which rates larger than $C-epsilon$ are fault-tolerantly achievable.
Our results are relevant in communication over large distances, and also on-chip, where distant parts of a quantum computer might need to communicate under higher levels of noise.
arXiv Detail & Related papers (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.