論文の概要: Equivariance versus Augmentation for Spherical Images
- arxiv url: http://arxiv.org/abs/2202.03990v1
- Date: Tue, 8 Feb 2022 16:49:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-09 14:07:36.025254
- Title: Equivariance versus Augmentation for Spherical Images
- Title(参考訳): 球面画像の等分散と拡張
- Authors: Jan E. Gerken, Oscar Carlsson, Hampus Linander, Fredrik Ohlsson,
Christoffer Petersson, Daniel Persson
- Abstract要約: 球面画像に適用した畳み込みニューラルネットワーク(CNN)における回転同値の役割を解析する。
我々は、S2CNNとして知られるグループ同変ネットワークと、データ増大量で訓練された標準非同変CNNの性能を比較した。
- 参考スコア(独自算出の注目度): 0.7388859384645262
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze the role of rotational equivariance in convolutional neural
networks (CNNs) applied to spherical images. We compare the performance of the
group equivariant networks known as S2CNNs and standard non-equivariant CNNs
trained with an increasing amount of data augmentation. The chosen
architectures can be considered baseline references for the respective design
paradigms. Our models are trained and evaluated on single or multiple items
from the MNIST or FashionMNIST dataset projected onto the sphere. For the task
of image classification, which is inherently rotationally invariant, we find
that by considerably increasing the amount of data augmentation and the size of
the networks, it is possible for the standard CNNs to reach at least the same
performance as the equivariant network. In contrast, for the inherently
equivariant task of semantic segmentation, the non-equivariant networks are
consistently outperformed by the equivariant networks with significantly fewer
parameters. We also analyze and compare the inference latency and training
times of the different networks, enabling detailed tradeoff considerations
between equivariant architectures and data augmentation for practical problems.
The equivariant spherical networks used in the experiments will be made
available at https://github.com/JanEGerken/sem_seg_s2cnn .
- Abstract(参考訳): 球面画像に適用した畳み込みニューラルネットワーク(CNN)における回転同値の役割を解析する。
我々は、S2CNNとして知られるグループ同変ネットワークと、データ増大量で訓練された標準非同変CNNの性能を比較する。
選択されたアーキテクチャは、それぞれの設計パラダイムのベースライン参照と見なすことができる。
我々のモデルは、球面に投影されたMNISTデータセットまたはFashionMNISTデータセットから、単一または複数の項目で訓練され、評価される。
本質的に回転不変である画像分類のタスクでは,データ増大量とネットワークサイズを大きく増加させることで,標準CNNが同変ネットワークと少なくとも同等の性能に達することが可能となる。
対照的に、セマンティックセグメンテーションの本質的に同変なタスクでは、非等変ネットワークは、パラメータが著しく少ない同変ネットワークによって一貫して優れる。
また、異なるネットワークの推論遅延とトレーニング時間を解析・比較し、同変アーキテクチャと実践上の問題に対するデータ拡張とのトレードオフを詳細に検討する。
実験で使用される同変球面ネットワークはhttps://github.com/JanEGerken/sem_seg_s2cnn で利用可能である。
関連論文リスト
- Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
我々はLattice-Equivariant Neural Networks (LENNs)と呼ばれる新しい同変ニューラルネットワークのクラスを提案する。
我々の手法は、ニューラルネットワークに基づく代理モデルLattice Boltzmann衝突作用素の学習を目的とした、最近導入されたフレームワーク内で開発されている。
本研究は,実世界のシミュレーションにおける機械学習強化Lattice Boltzmann CFDの実用化に向けて展開する。
論文 参考訳(メタデータ) (2024-05-22T17:23:15Z) - Revisiting Data Augmentation for Rotational Invariance in Convolutional
Neural Networks [0.29127054707887967]
画像分類のためのCNNにおける回転不変性について検討する。
実験により、データ拡張だけで訓練されたネットワークは、通常の非回転の場合と同様に、回転した画像の分類がほぼ可能であることが示された。
論文 参考訳(メタデータ) (2023-10-12T15:53:24Z) - Using and Abusing Equivariance [10.70891251559827]
群同変畳み込みニューラルネットワークは, サブサンプリングを用いて, 対称性に等しくなることを学習する。
ネットワークの入力次元を1ピクセル程度に変化させることで、一般的に使われているアーキテクチャが正確には同値ではなく、ほぼ同値となるのに十分であることを示す。
論文 参考訳(メタデータ) (2023-08-22T09:49:26Z) - SO(2) and O(2) Equivariance in Image Recognition with
Bessel-Convolutional Neural Networks [63.24965775030674]
この研究はベッセル畳み込みニューラルネットワーク(B-CNN)の開発を示す
B-CNNは、ベッセル関数に基づく特定の分解を利用して、画像とフィルタの間のキー操作を変更する。
他の手法と比較して,B-CNNの性能を評価するために検討を行った。
論文 参考訳(メタデータ) (2023-04-18T18:06:35Z) - What Affects Learned Equivariance in Deep Image Recognition Models? [10.590129221143222]
ImageNet上で,学習した翻訳の等価性と検証精度の相関関係を示す証拠が発見された。
データ拡張、モデルのキャパシティの低減、畳み込みの形での帰納バイアスは、ニューラルネットワークにおいてより高い学習等価性をもたらす。
論文 参考訳(メタデータ) (2023-04-05T17:54:25Z) - Deep Neural Networks with Efficient Guaranteed Invariances [77.99182201815763]
我々は、性能改善の問題、特にディープニューラルネットワークのサンプル複雑性に対処する。
群同変畳み込みは同変表現を得るための一般的なアプローチである。
本稿では,各ストリームが異なる変換に不変なマルチストリームアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-03-02T20:44:45Z) - The Lie Derivative for Measuring Learned Equivariance [84.29366874540217]
我々は、CNN、トランスフォーマー、ミキサーアーキテクチャにまたがる数百の事前訓練されたモデルの同値性について検討する。
その結果,不等式違反の多くは,不等式などのユビキタスネットワーク層における空間エイリアスに関連付けられることがわかった。
例えば、トランスはトレーニング後の畳み込みニューラルネットワークよりも同種である。
論文 参考訳(メタデータ) (2022-10-06T15:20:55Z) - Implicit Equivariance in Convolutional Networks [1.911678487931003]
IEN(Implicitly Equivariant Networks)は標準CNNモデルの異なる層で同変を誘導する。
IENは、高速な推論速度を提供しながら、最先端の回転同変追跡法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2021-11-28T14:44:17Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
フレーム平均化(FA)は、既知の(バックボーン)アーキテクチャを新しい対称性タイプに不変あるいは同変に適応するためのフレームワークである。
FAモデルが最大表現力を持つことを示す。
我々は,新しいユニバーサルグラフニューラルネット(GNN),ユニバーサルユークリッド運動不変点クラウドネットワーク,およびユークリッド運動不変メッセージパッシング(MP)GNNを提案する。
論文 参考訳(メタデータ) (2021-10-07T11:05:23Z) - Group Equivariant Neural Architecture Search via Group Decomposition and
Reinforcement Learning [17.291131923335918]
我々は、同値ニューラルネットワークの文脈において、新しい群論的結果を証明する。
また、計算複雑性を大幅に改善する同変ネットワークを構築するアルゴリズムを設計する。
我々は、性能を最大化するグループ同変ネットワークの探索に深層Q-ラーニングを用いる。
論文 参考訳(メタデータ) (2021-04-10T19:37:25Z) - Learning Invariances in Neural Networks [51.20867785006147]
ネットワークパラメータや拡張パラメータに関して,拡張性よりも分布をパラメータ化し,トレーニング損失を同時に最適化する方法を示す。
画像分類,回帰,セグメンテーション,分子特性予測における不均一性の正確なセットと範囲を,拡張の広い空間から復元することができる。
論文 参考訳(メタデータ) (2020-10-22T17:18:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。