論文の概要: L2B: Learning to Bootstrap Robust Models for Combating Label Noise
- arxiv url: http://arxiv.org/abs/2202.04291v2
- Date: Wed, 27 Mar 2024 22:33:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-29 22:28:24.790519
- Title: L2B: Learning to Bootstrap Robust Models for Combating Label Noise
- Title(参考訳): L2B:ラベルノイズを発生させるロバストモデルのブートストラップ学習
- Authors: Yuyin Zhou, Xianhang Li, Fengze Liu, Qingyue Wei, Xuxi Chen, Lequan Yu, Cihang Xie, Matthew P. Lungren, Lei Xing,
- Abstract要約: 本稿では,Learning to Bootstrap (L2B) という,シンプルで効果的な手法を提案する。
モデルは、誤った擬似ラベルの影響を受けずに、自身の予測を使ってブートストラップを行うことができる。
これは、実際の観測されたラベルと生成されたラベル間の重みを動的に調整し、メタラーニングを通じて異なるサンプル間の重みを動的に調整することで実現される。
- 参考スコア(独自算出の注目度): 52.02335367411447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks have shown great success in representation learning. However, when learning with noisy labels (LNL), they can easily overfit and fail to generalize to new data. This paper introduces a simple and effective method, named Learning to Bootstrap (L2B), which enables models to bootstrap themselves using their own predictions without being adversely affected by erroneous pseudo-labels. It achieves this by dynamically adjusting the importance weight between real observed and generated labels, as well as between different samples through meta-learning. Unlike existing instance reweighting methods, the key to our method lies in a new, versatile objective that enables implicit relabeling concurrently, leading to significant improvements without incurring additional costs. L2B offers several benefits over the baseline methods. It yields more robust models that are less susceptible to the impact of noisy labels by guiding the bootstrapping procedure more effectively. It better exploits the valuable information contained in corrupted instances by adapting the weights of both instances and labels. Furthermore, L2B is compatible with existing LNL methods and delivers competitive results spanning natural and medical imaging tasks including classification and segmentation under both synthetic and real-world noise. Extensive experiments demonstrate that our method effectively mitigates the challenges of noisy labels, often necessitating few to no validation samples, and is well generalized to other tasks such as image segmentation. This not only positions it as a robust complement to existing LNL techniques but also underscores its practical applicability. The code and models are available at https://github.com/yuyinzhou/l2b.
- Abstract(参考訳): ディープニューラルネットワークは表現学習において大きな成功を収めている。
しかし、ノイズラベル(LNL)で学習すると、簡単に過度に適合し、新しいデータへの一般化に失敗する。
本稿では,L2B(Learning to Bootstrap)と呼ばれるシンプルで効果的な手法を提案する。
これは、実際の観測されたラベルと生成されたラベル間の重みを動的に調整し、メタラーニングを通じて異なるサンプル間の重みを動的に調整することで実現される。
既存のインスタンス再重み付け方法とは異なり、我々の手法の鍵は、暗黙のレバーベリングを同時に可能にし、追加コストを発生させることなく大幅な改善をもたらす、新しい多目的な目的にある。
L2Bはベースライン方式よりもいくつかの利点がある。
ブートストラッピング手順をより効果的に導くことにより、ノイズラベルの影響を受けにくい、より堅牢なモデルが得られる。
インスタンスとラベルの両方の重みに適応することで、腐敗したインスタンスに含まれる貴重な情報をうまく活用する。
さらに、L2Bは既存のLNL法と互換性があり、合成ノイズと実世界のノイズの両方の下で分類とセグメンテーションを含む自然および医学的な画像タスクにまたがる競合的な結果をもたらす。
広汎な実験により,本手法はノイズラベルの課題を効果的に軽減し,検証サンプルを必要とせず,画像セグメンテーションなどの他のタスクによく応用できることを示した。
これは既存のLNL技術の堅牢な補完として位置づけるだけでなく、実用性も強調している。
コードとモデルはhttps://github.com/yuyinzhou/l2b.comから入手できる。
関連論文リスト
- ERASE: Error-Resilient Representation Learning on Graphs for Label Noise
Tolerance [53.73316938815873]
本稿では, ERASE (Error-Resilient representation learning on graphs for lAbel noiSe tolerancE) という手法を提案する。
ERASEは、プロトタイプの擬似ラベルとプロパゲーションされた識別ラベルを組み合わせて、表現をエラーレジリエンスで更新する。
提案手法は, 広い雑音レベルにおいて, 複数のベースラインをクリアマージンで上回り, 高いスケーラビリティを享受できる。
論文 参考訳(メタデータ) (2023-12-13T17:59:07Z) - SSB: Simple but Strong Baseline for Boosting Performance of Open-Set
Semi-Supervised Learning [106.46648817126984]
本稿では,挑戦的で現実的なオープンセットSSL設定について検討する。
目標は、inlierを正しく分類し、outlierを検知することである。
信頼度の高い疑似ラベル付きデータを組み込むことで、不整合分類性能を大幅に改善できることが判明した。
論文 参考訳(メタデータ) (2023-11-17T15:14:40Z) - Combating Label Noise With A General Surrogate Model For Sample
Selection [84.61367781175984]
本稿では,視覚言語サロゲートモデルCLIPを用いて,雑音の多いサンプルを自動的にフィルタリングする手法を提案する。
提案手法の有効性を実世界および合成ノイズデータセットで検証した。
論文 参考訳(メタデータ) (2023-10-16T14:43:27Z) - Label-Retrieval-Augmented Diffusion Models for Learning from Noisy
Labels [61.97359362447732]
ノイズの多いラベルからの学習は、実際のアプリケーションのための機械学習において、重要かつ長年にわたる問題である。
本稿では,生成モデルの観点からラベルノイズ問題を再構成する。
我々のモデルは、標準的な実世界のベンチマークデータセットで新しいSOTA(State-of-the-art)結果を達成する。
論文 参考訳(メタデータ) (2023-05-31T03:01:36Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
擬似ラベルは、弱い教師付き3Dセグメンテーションタスクに広く使われており、学習に使えるのはスパース・グラウンド・トラス・ラベルのみである。
本稿では,生成した擬似ラベルを正規化し,擬似ラベルとモデル予測とのギャップを効果的に狭めるための新しい学習戦略を提案する。
論文 参考訳(メタデータ) (2023-05-25T08:19:31Z) - Pseudo-Label Noise Suppression Techniques for Semi-Supervised Semantic
Segmentation [21.163070161951868]
半消費学習(SSL)は、教師なしデータをトレーニングに組み込むことで、大きなラベル付きデータセットの必要性を減らすことができる。
現在のSSLアプローチでは、初期教師付きトレーニングモデルを使用して、擬似ラベルと呼ばれる未ラベル画像の予測を生成する。
擬似ラベルノイズと誤りを3つのメカニズムで制御する。
論文 参考訳(メタデータ) (2022-10-19T09:46:27Z) - Towards Harnessing Feature Embedding for Robust Learning with Noisy
Labels [44.133307197696446]
ディープニューラルネットワーク(DNN)の記憶効果は,近年のラベルノイズ学習法において重要な役割を担っている。
ラベルノイズを用いたディープラーニングのための新しい特徴埋め込み方式, LabEl Noise Dilution (LEND) を提案する。
論文 参考訳(メタデータ) (2022-06-27T02:45:09Z) - Learning from Noisy Labels for Entity-Centric Information Extraction [17.50856935207308]
エンティティ中心の情報抽出のための単純な共正規化フレームワークを提案する。
これらのモデルはタスク固有の損失と共同最適化され、同様の予測を生成するために正規化される。
結局のところ、トレーニングされたモデルのいずれかを推論に利用できます。
論文 参考訳(メタデータ) (2021-04-17T22:49:12Z) - Pseudo-Representation Labeling Semi-Supervised Learning [0.0]
近年、半教師付き学習は、ラベルのないデータを活用してディープラーニングモデルの性能向上に成功している。
本研究は、擬似ラベル付け技術を用いて少量の未ラベルデータを反復的にラベル付けし、それらをトレーニングデータとして使用する、シンプルで柔軟なフレームワークである擬似表現ラベリングを提案する。
従来の手法と比較して、擬似表現ラベリングはより直感的であり、現実世界の実践的な問題を効果的に解決することができる。
論文 参考訳(メタデータ) (2020-05-31T03:55:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。