論文の概要: Predicting the intended action using internal simulation of perception
- arxiv url: http://arxiv.org/abs/2202.04466v1
- Date: Wed, 9 Feb 2022 13:52:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-10 14:23:32.963335
- Title: Predicting the intended action using internal simulation of perception
- Title(参考訳): 知覚の内部シミュレーションによる意図した行動予測
- Authors: Zahra Gharaee
- Abstract要約: 本稿では,行動パターンベクトルで表される知覚状態を内部的にシミュレートすることで,意図の予測を可能にするアーキテクチャを提案する。
3つの異なる3次元アクションのデータセットを用いて,アクションの認識と予測におけるアーキテクチャの能力を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This article proposes an architecture, which allows the prediction of
intention by internally simulating perceptual states represented by action
pattern vectors. To this end, associative self-organising neural networks
(A-SOM) is utilised to build a hierarchical cognitive architecture for
recognition and simulation of the skeleton based human actions. The abilities
of the proposed architecture in recognising and predicting actions is evaluated
in experiments using three different datasets of 3D actions. Based on the
experiments of this article, applying internally simulated perceptual states
represented by action pattern vectors improves the performance of the
recognition task in all experiments. Furthermore, internal simulation of
perception addresses the problem of having limited access to the sensory input,
and also the future prediction of the consecutive perceptual sequences. The
performance of the system is compared and discussed with similar architecture
using self-organizing neural networks (SOM).
- Abstract(参考訳): 本稿では,行動パターンベクトルで表される知覚状態の内部シミュレーションによって意図を予測するアーキテクチャを提案する。
この目的のために、アソシエーション自己組織型ニューラルネットワーク(A-SOM)を用いて、骨格に基づく人間の行動の認識とシミュレーションのための階層的認知アーキテクチャを構築する。
3次元動作の3つの異なるデータセットを用いて,動作認識と予測における提案アーキテクチャの能力を評価する。
本稿では,行動パターンベクトルで表される内的擬似知覚状態を適用することにより,全ての実験において認識タスクの性能が向上することを示す。
さらに、知覚の内部シミュレーションは、知覚入力へのアクセスが限られている問題や、連続する知覚シーケンスの将来の予測にも対処している。
システムの性能を自己組織化ニューラルネットワーク(SOM)を用いて類似のアーキテクチャで比較検討した。
関連論文リスト
- Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
本研究では,個人や環境の影響要因を考慮し,生物ロボットの動き予測データセットであるRatPoseを紹介する。
本稿では,シナリオ指向とモーション指向を効果的に分離するDual-stream Motion-Scenario Decouplingフレームワークを提案する。
難易度が異なるタスクに対して,提案したtextitDMSD フレームワークの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-05-17T14:14:31Z) - Distinguishing representational geometries with controversial stimuli:
Bayesian experimental design and its application to face dissimilarity
judgments [0.5735035463793008]
3次元顔モデルグラフィックスを逆転するように訓練されたニューラルネットワークは、識別、分類、あるいはオートエンコーディングで訓練されたのと同じアーキテクチャよりも、よりヒューマンアライメントであることを示す。
以上の結果から,3次元顔モデルグラフィックスを逆転するように訓練されたニューラルネットワークは,識別,分類,自動エンコーディングを訓練したのと同じアーキテクチャよりも,より人間らしくなっていることが示唆された。
論文 参考訳(メタデータ) (2022-11-28T04:17:35Z) - Convolutional Neural Generative Coding: Scaling Predictive Coding to
Natural Images [79.07468367923619]
畳み込み型神経生成符号化(Conv-NGC)を開発した。
我々は、潜伏状態マップを段階的に洗練する柔軟な神経生物学的動機付けアルゴリズムを実装した。
本研究は,脳にインスパイアされたニューラル・システムによる再建と画像復調の課題に対する効果について検討する。
論文 参考訳(メタデータ) (2022-11-22T06:42:41Z) - Developing hierarchical anticipations via neural network-based event
segmentation [14.059479351946386]
我々は、自律的に学習された潜在イベントコードによる階層的予測の開発をモデル化する。
本稿では,学習バイアスが緩やかに変化する潜在状態の発達を促進する階層的再帰型ニューラルネットワークアーキテクチャを提案する。
より高いレベルのネットワークは、潜伏状態が変化しがちな状況を予測することを学ぶ。
論文 参考訳(メタデータ) (2022-06-04T18:54:31Z) - 3D Pose Estimation and Future Motion Prediction from 2D Images [26.28886209268217]
本稿では,3次元人物のポーズを推定し,RGB画像列から将来の3次元動作を予測するという,高相関な課題に共同で取り組むことを検討する。
リー代数のポーズ表現に基づいて、人間の運動キネマティクスを自然に保存する新しい自己投射機構が提案されている。
論文 参考訳(メタデータ) (2021-11-26T01:02:00Z) - Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction [2.580765958706854]
3次元骨格に基づく運動予測と行動認識は、人間の行動分析における2つの中間課題である。
本稿では, グラフ畳み込みニューラルネットワークとリカレントニューラルネットワークを併用した, 共同動作予測と活動認識のための新しい手法を提案する。
論文 参考訳(メタデータ) (2021-08-03T14:07:10Z) - Action in Mind: A Neural Network Approach to Action Recognition and
Segmentation [0.0]
本稿では,ニューラルネットワークに基づく多層アーキテクチャの異なる実装によるヒューマンアクション認識のための新しい計算手法を提案する。
提案する行動認識アーキテクチャは,前処理層,順序ベクトル表現層,ニューラルネットワークの3層を含む複数の処理層から構成される。
開発の各段階において、システムは連続する3d体姿勢からなる入力データで訓練され、システムがこれまで経験したことのない一般的な入力データでテストされる。
論文 参考訳(メタデータ) (2021-04-30T09:53:28Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z) - Score-informed Networks for Music Performance Assessment [64.12728872707446]
MPAモデルにスコア情報を組み込んだディープニューラルネットワークに基づく手法はまだ研究されていない。
スコアインフォームド性能評価が可能な3つのモデルを提案する。
論文 参考訳(メタデータ) (2020-08-01T07:46:24Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。