論文の概要: Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction
- arxiv url: http://arxiv.org/abs/2108.01518v1
- Date: Tue, 3 Aug 2021 14:07:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-08-04 14:04:00.844014
- Title: Non-local Graph Convolutional Network for joint Activity Recognition and
Motion Prediction
- Title(参考訳): 共同活動認識と動き予測のための非局所グラフ畳み込みネットワーク
- Authors: Dianhao Zhang, Ngo Anh Vien, Mien Van, Sean McLoone
- Abstract要約: 3次元骨格に基づく運動予測と行動認識は、人間の行動分析における2つの中間課題である。
本稿では, グラフ畳み込みニューラルネットワークとリカレントニューラルネットワークを併用した, 共同動作予測と活動認識のための新しい手法を提案する。
- 参考スコア(独自算出の注目度): 2.580765958706854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D skeleton-based motion prediction and activity recognition are two
interwoven tasks in human behaviour analysis. In this work, we propose a motion
context modeling methodology that provides a new way to combine the advantages
of both graph convolutional neural networks and recurrent neural networks for
joint human motion prediction and activity recognition. Our approach is based
on using an LSTM encoder-decoder and a non-local feature extraction attention
mechanism to model the spatial correlation of human skeleton data and temporal
correlation among motion frames. The proposed network can easily include two
output branches, one for Activity Recognition and one for Future Motion
Prediction, which can be jointly trained for enhanced performance. Experimental
results on Human 3.6M, CMU Mocap and NTU RGB-D datasets show that our proposed
approach provides the best prediction capability among baseline LSTM-based
methods, while achieving comparable performance to other state-of-the-art
methods.
- Abstract(参考訳): 3次元骨格に基づく運動予測と行動認識は、人間の行動分析における2つの中間課題である。
本研究では,グラフ畳み込みニューラルネットワークと連続ニューラルネットワークの利点を融合した動き文脈モデリング手法を提案する。
本研究では、LSTMエンコーダデコーダと非局所特徴抽出アテンション機構を用いて、人間の骨格データの空間的相関と運動フレーム間の時間的相関をモデル化する。
提案するネットワークは,動作認識のための2つの出力分岐と,性能向上のための協調訓練を行うFuture Motion Predictionの1つを含むことができる。
また,Human 3.6M,CMU Mocap,NTU RGB-Dデータセットによる実験結果から,提案手法はベースラインLSTM法で最高の予測能力を提供するとともに,他の最先端手法と同等の性能を実現する。
関連論文リスト
- Spatio-temporal MLP-graph network for 3D human pose estimation [8.267311047244881]
グラフ畳み込みネットワークとその変種は3次元人間のポーズ推定において大きな可能性を示している。
暗黙の伝搬フェアリングを用いたグラフフィルタリングにより得られる新しい重み付きヤコビ特徴則を導入する。
また, 関節間の関係を学習するために, 隣接変調を用いた。
論文 参考訳(メタデータ) (2023-08-29T14:00:55Z) - Motion-Scenario Decoupling for Rat-Aware Video Position Prediction:
Strategy and Benchmark [49.58762201363483]
本研究では,個人や環境の影響要因を考慮し,生物ロボットの動き予測データセットであるRatPoseを紹介する。
本稿では,シナリオ指向とモーション指向を効果的に分離するDual-stream Motion-Scenario Decouplingフレームワークを提案する。
難易度が異なるタスクに対して,提案したtextitDMSD フレームワークの大幅な性能向上を示す。
論文 参考訳(メタデータ) (2023-05-17T14:14:31Z) - Data-driven modelling of brain activity using neural networks, Diffusion
Maps, and the Koopman operator [0.0]
タスク依存型fMRIデータから脳活動の長期外ダイナミクスをモデル化するための機械学習手法を提案する。
我々は拡散写像(DM)を用いて、創発的な高次元fMRI時系列が進化する低次元多様体をパラメータ化する変数の集合を発見する。
組込み多様体上にFNN(Feedforward Neural Networks)とクープマン演算子(Koopman operator)という2つの手法を用いて、低次モデル(ROM)を構築する。
論文 参考訳(メタデータ) (2023-04-24T09:08:12Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
アクションラベルはソースデータセットでのみ利用可能だが、トレーニング段階のターゲットデータセットでは利用できない。
我々は,2つの骨格に基づく行動データセット間の領域シフトを低減するために,自己スーパービジョン方式を利用する。
時間的セグメントや人体部分のセグメンテーションとパーフォーミングにより、我々は2つの自己教師あり学習分類タスクを設計する。
論文 参考訳(メタデータ) (2022-07-17T07:05:39Z) - Skeletal Human Action Recognition using Hybrid Attention based Graph
Convolutional Network [3.261599248682793]
相対的距離と相対的角度情報に基づいて局所的注意マップをグローバルに拡張する適応型空間的注意層を提案する。
我々は,頭部,手,足を結ぶ新しい初期グラフ隣接行列を設計し,行動認識精度の点で目に見える改善点を示す。
提案モデルは,日常生活における人間活動の分野における大規模かつ挑戦的な2つのデータセットを用いて評価する。
論文 参考訳(メタデータ) (2022-07-12T12:22:21Z) - Joint-bone Fusion Graph Convolutional Network for Semi-supervised
Skeleton Action Recognition [65.78703941973183]
本稿では,CD-JBF-GCNをエンコーダとし,ポーズ予測ヘッドをデコーダとして使用する新しい相関駆動型ジョイントボーン・フュージョングラフ畳み込みネットワークを提案する。
具体的には、CD-JBF-GCは、関節ストリームと骨ストリームの間の運動伝達を探索することができる。
自己教師型トレーニング段階におけるポーズ予測に基づくオートエンコーダにより、未ラベルデータから動作表現を学習することができる。
論文 参考訳(メタデータ) (2022-02-08T16:03:15Z) - Learning Multi-Granular Spatio-Temporal Graph Network for Skeleton-based
Action Recognition [49.163326827954656]
骨格に基づく行動分類のための新しい多言語時空間グラフネットワークを提案する。
2つの枝の枝からなるデュアルヘッドグラフネットワークを開発し、少なくとも2つの時間分解能を抽出する。
3つの大規模データセットについて広範な実験を行った。
論文 参考訳(メタデータ) (2021-08-10T09:25:07Z) - Multi-level Motion Attention for Human Motion Prediction [132.29963836262394]
本研究は, 関節, 身体部分, フルポーズレベルなど, 異なる種類の注意力の使用について検討した。
我々は,Human3.6M,AMASS,3DPWを用いて,周期的および非周期的両方の行動に対するアプローチの利点を検証した。
論文 参考訳(メタデータ) (2021-06-17T08:08:11Z) - On the spatial attention in Spatio-Temporal Graph Convolutional Networks
for skeleton-based human action recognition [97.14064057840089]
カルチャーネットワーク(GCN)は、スケルトンをグラフとしてモデル化することで、スケルトンに基づく人間の行動認識の性能を約束する。
最近提案されたG時間に基づく手法のほとんどは、ネットワークの各層におけるグラフ構造を学習することで、性能を向上させる。
論文 参考訳(メタデータ) (2020-11-07T19:03:04Z) - Entropy Decision Fusion for Smartphone Sensor based Human Activity
Recognition [0.0]
本稿では,畳み込みニューラルネットワーク,再帰畳み込みネットワーク,ベクトルマシンをコンピュータで支援するためのアプローチを提案する。
UCI-HARとWISDMの2つのベンチマークデータセットで実験が行われた。
論文 参考訳(メタデータ) (2020-05-30T21:09:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。