論文の概要: Exploring Structural Sparsity in Neural Image Compression
- arxiv url: http://arxiv.org/abs/2202.04595v2
- Date: Thu, 10 Feb 2022 07:46:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-11 13:01:50.461522
- Title: Exploring Structural Sparsity in Neural Image Compression
- Title(参考訳): ニューラル画像圧縮における構造空間の探索
- Authors: Shanzhi Yin, Fanyang Meng, Wen Tan, Chao Li, Youneng Bao, Yongsheng
Liang, Wei Liu
- Abstract要約: 本稿では,各コンボリューションチャネルの重要性を判定し,トレーニング中に空間性を導入するために,ABCM(プラグイン適応型バイナリチャネルマスキング)を提案する。
推論中、重要でないチャネルをプルーニングしてスリムネットワークを得る。
実験の結果,最大7倍の計算削減と3倍の加速は無視可能な性能低下で達成できることがわかった。
- 参考スコア(独自算出の注目度): 14.106763725475469
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Neural image compression have reached or out-performed traditional methods
(such as JPEG, BPG, WebP). However,their sophisticated network structures with
cascaded convolution layers bring heavy computational burden for practical
deployment. In this paper, we explore the structural sparsity in neural image
compression network to obtain real-time acceleration without any specialized
hardware design or algorithm. We propose a simple plug-in adaptive binary
channel masking(ABCM) to judge the importance of each convolution channel and
introduce sparsity during training. During inference, the unimportant channels
are pruned to obtain slimmer network and less computation. We implement our
method into three neural image compression networks with different entropy
models to verify its effectiveness and generalization, the experiment results
show that up to 7x computation reduction and 3x acceleration can be achieved
with negligible performance drop.
- Abstract(参考訳): ニューラル画像圧縮は従来の手法(JPEG、BPG、WebPなど)に到達または性能が向上した。
しかし、カスケード畳み込み層を持つ洗練されたネットワーク構造は、実用的な配置に大量の計算負荷をもたらす。
本稿では,ニューラル画像圧縮ネットワークにおける構造的空間性について検討し,ハードウェア設計やアルゴリズムを使わずにリアルタイムな高速化を実現する。
本稿では,各畳み込みチャネルの重要性を判断し,訓練中にスパーシティを導入するための,簡易なプラグイン適応バイナリチャネルマスキング(abcm)を提案する。
推論の間、重要でないチャネルは、よりスリムなネットワークと少ない計算を得るために刈り取られる。
提案手法を,異なるエントロピーモデルを持つ3つのニューラル画像圧縮ネットワークに実装し,その有効性と一般化性を検証する。
関連論文リスト
- Streaming Lossless Volumetric Compression of Medical Images Using Gated
Recurrent Convolutional Neural Network [0.0]
本稿では,ハードウェアフレンドリーなストリーミングロスレスボリューム圧縮フレームワークを提案する。
本稿では,多種多様な畳み込み構造と融合ゲート機構を組み合わせたゲートリカレント畳み込みニューラルネットワークを提案する。
提案手法は,堅牢な一般化能力と競争圧縮速度を示す。
論文 参考訳(メタデータ) (2023-11-27T07:19:09Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Modality-Agnostic Variational Compression of Implicit Neural
Representations [96.35492043867104]
Inlicit Neural Representation (INR) としてパラメータ化されたデータの関数的ビューに基づくモーダリティ非依存型ニューラル圧縮アルゴリズムを提案する。
潜時符号化と疎性の間のギャップを埋めて、ソフトゲーティング機構に非直線的にマッピングされたコンパクト潜時表現を得る。
このような潜在表現のデータセットを得た後、ニューラル圧縮を用いてモーダリティ非依存空間におけるレート/歪みトレードオフを直接最適化する。
論文 参考訳(メタデータ) (2023-01-23T15:22:42Z) - Wavelet Feature Maps Compression for Image-to-Image CNNs [3.1542695050861544]
本稿では,高分解能なアクティベーションマップ圧縮をポイントワイド畳み込みと統合した新しい手法を提案する。
比較的小さく、より優雅な性能劣化を伴う1-4ビットのアクティベーション量子化に匹敵する圧縮率を達成する。
論文 参考訳(メタデータ) (2022-05-24T20:29:19Z) - Reducing Redundancy in the Bottleneck Representation of the Autoencoders [98.78384185493624]
オートエンコーダは教師なしニューラルネットワークの一種であり、様々なタスクを解くのに使用できる。
本稿では,ボトルネック表現における特徴冗長性を明示的に罰する手法を提案する。
我々は,3つの異なるデータセットを用いた次元削減,MNISTデータセットを用いた画像圧縮,ファッションMNISTを用いた画像デノナイズという,さまざまなタスクにまたがってアプローチを検証した。
論文 参考訳(メタデータ) (2022-02-09T18:48:02Z) - Self-supervised Neural Networks for Spectral Snapshot Compressive
Imaging [15.616674529295366]
我々は、訓練されていないニューラルネットワークを用いて、スナップショット圧縮画像(SCI)の再構成問題を解決することを検討する。
本稿では,DIP(Deep Image Priors)やディープデコーダ(Deep Decoder)といった未学習のニューラルネットワークにヒントを得て,DIPをプラグアンドプレイシステムに統合して,スペクトルSCI再構成のための自己教師型ネットワークを構築する。
論文 参考訳(メタデータ) (2021-08-28T14:17:38Z) - Group Fisher Pruning for Practical Network Compression [58.25776612812883]
本稿では,様々な複雑な構造に応用可能な汎用チャネルプルーニング手法を提案する。
我々は、単一チャネルと結合チャネルの重要性を評価するために、フィッシャー情報に基づく統一されたメトリクスを導出する。
提案手法は,結合チャネルを含む任意の構造をプルークするために利用できる。
論文 参考訳(メタデータ) (2021-08-02T08:21:44Z) - Image Complexity Guided Network Compression for Biomedical Image
Segmentation [5.926887379656135]
生体画像セグメント化のための画像複雑化誘導型ネットワーク圧縮手法を提案する。
データセットの複雑さを、圧縮によるターゲットネットワークの精度劣化にマップする。
このマッピングは、圧縮ネットワークを生成するための畳み込み層ワイド乗算因子を決定するために用いられる。
論文 参考訳(メタデータ) (2021-07-06T22:28:10Z) - On the Impact of Lossy Image and Video Compression on the Performance of
Deep Convolutional Neural Network Architectures [17.349420462716886]
本研究では,画像と映像の圧縮技術がディープラーニングアーキテクチャの性能に与える影響について検討する。
本研究では,人間のポーズ推定,セマンティックセグメンテーション,オブジェクト検出,行動認識,単眼深度推定の5つのタスクにおけるパフォーマンスへの影響について検討する。
その結果,ネットワーク性能と損失圧縮のレベルとの間には,非線形および不均一な関係が認められた。
論文 参考訳(メタデータ) (2020-07-28T15:37:37Z) - Channel-Level Variable Quantization Network for Deep Image Compression [50.3174629451739]
チャネルレベルの可変量子化ネットワークを提案し、重要なチャネルに対してより多くの畳み込みを動的に割り当て、無視可能なチャネルに対して退避する。
提案手法は優れた性能を実現し,より優れた視覚的再構成を実現する。
論文 参考訳(メタデータ) (2020-07-15T07:20:39Z) - Structured Sparsification with Joint Optimization of Group Convolution
and Channel Shuffle [117.95823660228537]
本稿では,効率的なネットワーク圧縮のための新しい構造空間分割法を提案する。
提案手法は, 畳み込み重みに対する構造的疎度を自動的に誘導する。
また,学習可能なチャネルシャッフル機構によるグループ間通信の問題にも対処する。
論文 参考訳(メタデータ) (2020-02-19T12:03:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。