Irreversibility and the Arrow of Time
- URL: http://arxiv.org/abs/2202.04619v1
- Date: Wed, 9 Feb 2022 18:32:01 GMT
- Title: Irreversibility and the Arrow of Time
- Authors: J\"urg Fr\"ohlich
- Abstract summary: Irreversible behavior often manifests itself in the guise of entropy production.
A derivation of the laws of thermodynamics from (quantum) statistical mechanics is presented.
Results on diffusive (Brownian) motion of a quantum particle interacting with a quasi-free quantum-mechanical heat bath are reviewed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Within the general formalism of quantum theory irreversibility and the arrow
of time in the evolution of various physical systems are studied. Irreversible
behavior often manifests itself in the guise of entropy production. This
motivates me to begin this paper with a brief review of quantum-mechanical
entropy, a subject that Elliott Lieb has made outstanding contributions to,
followed by an enumeration of examples of irreversible behavior and of an arrow
of time analyzed in later sections. Subsequently, a derivation of the laws of
thermodynamics from (quantum) statistical mechanics, and, in particular, of the
Second Law of thermodynamics, in the forms given to it by Clausius and Carnot,
is presented. In a third part, results on diffusive (Brownian) motion of a
quantum particle interacting with a quasi-free quantum-mechanical heat bath are
reviewed. This is followed by an outline of a theory of friction by emission of
Cherenkov radiation of sound waves in a system consisting of a particle moving
through a Bose- Einstein condensate and interacting with it. In what may be the
most important section of this paper, the fundamental arrow of time inherent in
Quantum Mechanics is discussed.
Related papers
- Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Quantum Thermodynamics [0.0]
Theory of quantum thermodynamics investigates how the concepts of heat, work, and temperature can be carried over to the quantum realm.
Lecture notes provide an introduction to the thermodynamics of small quantum systems.
arXiv Detail & Related papers (2024-06-27T14:28:35Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A Quantum-Classical Model of Brain Dynamics [62.997667081978825]
Mixed Weyl symbol is used to describe brain processes at the microscopic level.
Electromagnetic fields and phonon modes involved in the processes are treated either classically or semi-classically.
Zero-point quantum effects can be incorporated into numerical simulations by controlling the temperature of each field mode.
arXiv Detail & Related papers (2023-01-17T15:16:21Z) - On the gravitization of quantum mechanics and wave function reduction in
Bohmian quantum mechanics [0.0]
This paper uses Einstein's equivalence principle in the description of the gravity-induced wave function reduction in the framework of Bohmian causal quantum theory.
The critical mass for transition from the quantum world to the classical world, the reduction time of the wave function and the temperature that corresponds to the Unruh temperature will be obtained.
arXiv Detail & Related papers (2022-09-01T14:58:35Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Correspondence Between the Energy Equipartition Theorem in Classical
Mechanics and its Phase-Space Formulation in Quantum Mechanics [62.997667081978825]
In quantum mechanics, the energy per degree of freedom is not equally distributed.
We show that in the high-temperature regime, the classical result is recovered.
arXiv Detail & Related papers (2022-05-24T20:51:03Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Quantum superposition of thermodynamic evolutions with opposing time's
arrows [0.0]
We show that a definite thermodynamic time's arrow can be restored by a quantum measurement of entropy production.
Remarkably, for small values, the amplitudes of forward and time-reversal processes can interfere.
arXiv Detail & Related papers (2020-08-06T18:00:38Z) - Quantum corrections to the entropy in a driven quantum Brownian motion
model [2.28438857884398]
We study the von Neumann entropy of a particle undergoing quantum Brownian motion.
Our results bring important insights to the understanding of entropy in open quantum systems.
arXiv Detail & Related papers (2020-08-05T14:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.