Target-aware Molecular Graph Generation
- URL: http://arxiv.org/abs/2202.04829v1
- Date: Thu, 10 Feb 2022 04:31:14 GMT
- Title: Target-aware Molecular Graph Generation
- Authors: Cheng Tan, Zhangyang Gao, Stan Z. Li
- Abstract summary: We propose SiamFlow, which forces the flow to fit the distribution of target sequence embeddings in latent space.
Specifically, we employ an alignment loss and a uniform loss to bring target sequence embeddings and drug graph embeddings into agreements.
Experiments quantitatively show that our proposed method learns meaningful representations in the latent space toward the target-aware molecular graph generation.
- Score: 37.937378787812264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generating molecules with desired biological activities has attracted growing
attention in drug discovery. Previous molecular generation models are designed
as chemocentric methods that hardly consider the drug-target interaction,
limiting their practical applications. In this paper, we aim to generate
molecular drugs in a target-aware manner that bridges biological activity and
molecular design. To solve this problem, we compile a benchmark dataset from
several publicly available datasets and build baselines in a unified framework.
Building on the recent advantages of flow-based molecular generation models, we
propose SiamFlow, which forces the flow to fit the distribution of target
sequence embeddings in latent space. Specifically, we employ an alignment loss
and a uniform loss to bring target sequence embeddings and drug graph
embeddings into agreements while avoiding collapse. Furthermore, we formulate
the alignment into a one-to-many problem by learning spaces of target sequence
embeddings. Experiments quantitatively show that our proposed method learns
meaningful representations in the latent space toward the target-aware
molecular graph generation and provides an alternative approach to bridge
biology and chemistry in drug discovery.
Related papers
- GraphXForm: Graph transformer for computer-aided molecular design with application to extraction [73.1842164721868]
We present GraphXForm, a decoder-only graph transformer architecture, which is pretrained on existing compounds and then fine-tuned.
We evaluate it on two solvent design tasks for liquid-liquid extraction, showing that it outperforms four state-of-the-art molecular design techniques.
arXiv Detail & Related papers (2024-11-03T19:45:15Z) - GFlowNet Pretraining with Inexpensive Rewards [2.924067540644439]
We introduce Atomic GFlowNets (A-GFNs), a foundational generative model leveraging individual atoms as building blocks to explore drug-like chemical space more comprehensively.
We propose an unsupervised pre-training approach using offline drug-like molecule datasets, which conditions A-GFNs on inexpensive yet informative molecular descriptors.
We further our method by implementing a goal-conditioned fine-tuning process, which adapts A-GFNs to optimize for specific target properties.
arXiv Detail & Related papers (2024-09-15T11:42:17Z) - Aligning Target-Aware Molecule Diffusion Models with Exact Energy Optimization [147.7899503829411]
AliDiff is a novel framework to align pretrained target diffusion models with preferred functional properties.
It can generate molecules with state-of-the-art binding energies with up to -7.07 Avg. Vina Score.
arXiv Detail & Related papers (2024-07-01T06:10:29Z) - Navigating Chemical Space with Latent Flows [20.95884505685799]
We propose a new framework, ChemFlow, to traverse chemical space through navigating the latent space learned by molecule generative models through flows.
We validate the efficacy of ChemFlow on molecule manipulation and single- and multi-objective optimization tasks under both supervised and unsupervised molecular discovery settings.
arXiv Detail & Related papers (2024-05-07T03:55:57Z) - Active Causal Learning for Decoding Chemical Complexities with Targeted Interventions [0.0]
We introduce an active learning approach that discerns underlying cause-effect relationships through strategic sampling.
This method identifies the smallest subset of the dataset capable of encoding the most information representative of a much larger chemical space.
The identified causal relations are then leveraged to conduct systematic interventions, optimizing the design task within a chemical space that the models have not encountered previously.
arXiv Detail & Related papers (2024-04-05T17:15:48Z) - Retrieval-based Controllable Molecule Generation [63.44583084888342]
We propose a new retrieval-based framework for controllable molecule generation.
We use a small set of molecules to steer the pre-trained generative model towards synthesizing molecules that satisfy the given design criteria.
Our approach is agnostic to the choice of generative models and requires no task-specific fine-tuning.
arXiv Detail & Related papers (2022-08-23T17:01:16Z) - A biologically-inspired evaluation of molecular generative machine
learning [17.623886600638716]
A novel biologically-inspired benchmark for the evaluation of molecular generative models is proposed.
We propose a recreation metric, apply drug-target affinity prediction and molecular docking as complementary techniques for the evaluation of generative outputs.
arXiv Detail & Related papers (2022-08-20T11:01:10Z) - Exploring Chemical Space with Score-based Out-of-distribution Generation [57.15855198512551]
We propose a score-based diffusion scheme that incorporates out-of-distribution control in the generative differential equation (SDE)
Since some novel molecules may not meet the basic requirements of real-world drugs, MOOD performs conditional generation by utilizing the gradients from a property predictor.
We experimentally validate that MOOD is able to explore the chemical space beyond the training distribution, generating molecules that outscore ones found with existing methods, and even the top 0.01% of the original training pool.
arXiv Detail & Related papers (2022-06-06T06:17:11Z) - Analysis of training and seed bias in small molecules generated with a
conditional graph-based variational autoencoder -- Insights for practical
AI-driven molecule generation [0.0]
We analyze the impact of seed and training bias on the output of an activity-conditioned graph-based variational autoencoder (VAE)
Our graph-based generative model is shown to excel in producing desired conditioned activities and favorable unconditioned physical properties in generated molecules.
arXiv Detail & Related papers (2021-07-19T16:00:05Z) - Advanced Graph and Sequence Neural Networks for Molecular Property
Prediction and Drug Discovery [53.00288162642151]
We develop MoleculeKit, a suite of comprehensive machine learning tools spanning different computational models and molecular representations.
Built on these representations, MoleculeKit includes both deep learning and traditional machine learning methods for graph and sequence data.
Results on both online and offline antibiotics discovery and molecular property prediction tasks show that MoleculeKit achieves consistent improvements over prior methods.
arXiv Detail & Related papers (2020-12-02T02:09:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.