論文の概要: Real-Time Siamese Multiple Object Tracker with Enhanced Proposals
- arxiv url: http://arxiv.org/abs/2202.04966v1
- Date: Thu, 10 Feb 2022 11:41:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-11 15:55:25.272957
- Title: Real-Time Siamese Multiple Object Tracker with Enhanced Proposals
- Title(参考訳): 拡張提案によるリアルタイムシームズ多目的トラッカー
- Authors: Lorenzo Vaquero, V\'ictor M. Brea, Manuel Mucientes
- Abstract要約: SiamMOTIONは、数十の任意のオブジェクトをリアルタイムで追跡できる。
注意機構と関心領域抽出器によって品質特性を生産する。
SiamMOTIONは5つの公開ベンチマークで検証されている。
- 参考スコア(独自算出の注目度): 2.4923006485141284
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Maintaining the identity of multiple objects in real-time video is a
challenging task, as it is not always possible to run a detector on every
frame. Thus, motion estimation systems are often employed, which either do not
scale well with the number of targets or produce features with limited semantic
information. To solve the aforementioned problems and allow the tracking of
dozens of arbitrary objects in real-time, we propose SiamMOTION. SiamMOTION
includes a novel proposal engine that produces quality features through an
attention mechanism and a region-of-interest extractor fed by an inertia module
and powered by a feature pyramid network. Finally, the extracted tensors enter
a comparison head that efficiently matches pairs of exemplars and search areas,
generating quality predictions via a pairwise depthwise region proposal network
and a multi-object penalization module. SiamMOTION has been validated on five
public benchmarks, achieving leading performance against current
state-of-the-art trackers.
- Abstract(参考訳): リアルタイムビデオで複数のオブジェクトのアイデンティティを維持することは難しい作業であり、すべてのフレームで検出器を実行することは必ずしも不可能である。
したがって、ターゲット数に比例してスケールしない、あるいは意味情報に制限のある特徴を生み出す、動作推定システムが採用されることが多い。
上記の課題を解決し、多数の任意のオブジェクトをリアルタイムで追跡できるようにするため、SiamMOTIONを提案する。
SiamMOTIONは、アテンション機構と、慣性モジュールによって供給され、特徴ピラミッドネットワークによって駆動される関心領域抽出器によって品質特性を生成する新しい提案エンジンを含む。
最後に、抽出されたテンソルは、比較ヘッドに入力され、例示と探索領域のペアを効率的にマッチングし、ペアワイズ深さ領域提案ネットワークおよび多目的ペナリゼーションモジュールを介して品質予測を生成する。
SiamMOTIONは5つの公開ベンチマークで検証され、現在の最先端トラッカーに対して主要なパフォーマンスを達成した。
関連論文リスト
- STCMOT: Spatio-Temporal Cohesion Learning for UAV-Based Multiple Object Tracking [13.269416985959404]
無人航空機(UAV)ビデオにおける複数物体追跡(MOT)は、コンピュータビジョンにおける多様な用途において重要である。
時空間結合型多目的追跡フレームワーク(STCMOT)を提案する。
歴史的埋め込み機能を用いて,ReIDの表現と検出機能を逐次的にモデル化する。
我々のフレームワークはMOTAとIDF1メトリクスで新しい最先端のパフォーマンスを設定します。
論文 参考訳(メタデータ) (2024-09-17T14:34:18Z) - CORT: Class-Oriented Real-time Tracking for Embedded Systems [46.3107850275261]
本研究は,マルチクラスオブジェクトトラッキングに対する新しいアプローチを提案する。
トラッキング性能をペナルティ化することなく、より小さく予測可能な実行時間を実現することができる。
提案手法は,異なるタイプの複数の対象を持つ複雑な都市シナリオにおいて評価された。
論文 参考訳(メタデータ) (2024-07-20T09:12:17Z) - Transformer Network for Multi-Person Tracking and Re-Identification in
Unconstrained Environment [0.6798775532273751]
マルチオブジェクトトラッキング(MOT)は、監視、スポーツ分析、自動運転、協調ロボットなど、さまざまな分野に深く応用されている。
我々は、オブジェクト検出とアイデンティティリンクを単一のエンドツーエンドのトレーニング可能なフレームワーク内にマージする統合MOT手法を提唱した。
本システムでは,記憶時記憶モジュールの高機能化を図り,アグリゲータを用いて効果的に記憶時記憶モジュールを符号化する。
論文 参考訳(メタデータ) (2023-12-19T08:15:22Z) - Appearance-Based Refinement for Object-Centric Motion Segmentation [85.2426540999329]
本稿では,ビデオストリームの時間的一貫性を利用して,不正確なフローベース提案を補正する外観に基づく改善手法を提案する。
提案手法では,高精度なフロー予測マスクを模範として,シーケンスレベルの選択機構を用いる。
パフォーマンスは、DAVIS、YouTube、SegTrackv2、FBMS-59など、複数のビデオセグメンテーションベンチマークで評価されている。
論文 参考訳(メタデータ) (2023-12-18T18:59:51Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOTはイベントベースのマルチオブジェクトトラッカーである。
SpikeMOTはスパイクニューラルネットワークを使用して、オブジェクトに関連するイベントストリームからスパーステンポラルな特徴を抽出する。
論文 参考訳(メタデータ) (2023-09-29T05:13:43Z) - Occlusion-Aware Detection and Re-ID Calibrated Network for Multi-Object
Tracking [38.36872739816151]
検出器内のOAA(Occlusion-Aware Attention)モジュールは、隠蔽された背景領域を抑えながらオブジェクトの特徴を強調する。
OAAは、隠蔽される可能性のある物体の検出器を強化する変調器として機能する。
最適輸送問題に基づくRe-ID埋め込みマッチングブロックを設計する。
論文 参考訳(メタデータ) (2023-08-30T06:56:53Z) - Tracking Objects and Activities with Attention for Temporal Sentence
Grounding [51.416914256782505]
時間文 (TSG) は、意味的に自然言語のクエリと一致した時間セグメントを、トリミングされていないセグメントでローカライズすることを目的としている。
本稿では,(A)マルチモーダル・検索空間を生成するクロスモーダル・ターゲット・ジェネレータと(B)マルチモーダル・ターゲットの動作を追跡し,クエリ関連セグメントを予測するテンポラル・センセント・トラッカーとを含む,新しいテンポラル・センセント・トラッカー・ネットワーク(TSTNet)を提案する。
論文 参考訳(メタデータ) (2023-02-21T16:42:52Z) - Scalable Video Object Segmentation with Identification Mechanism [125.4229430216776]
本稿では,半教師付きビデオオブジェクト(VOS)のスケーラブルで効果的なマルチオブジェクトモデリングを実現する上での課題について検討する。
AOT(Associating Objects with Transformers)とAOST(Associating Objects with Scalable Transformers)の2つの革新的なアプローチを提案する。
当社のアプローチは最先端の競合に勝って,6つのベンチマークすべてにおいて,例外的な効率性とスケーラビリティを一貫して示しています。
論文 参考訳(メタデータ) (2022-03-22T03:33:27Z) - Looking Beyond Two Frames: End-to-End Multi-Object Tracking Using
Spatial and Temporal Transformers [20.806348407522083]
MO3TRはエンドツーエンドのオンラインマルチオブジェクトトラッキングフレームワークです。
オブジェクトの相互作用を長期の時間的埋め込みにエンコードする。
明示的なデータアソシエーションモジュールを必要とせずに、開始と終了を追跡する。
論文 参考訳(メタデータ) (2021-03-27T07:23:38Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
本稿では,Siamese ネットワークに基づく視覚的トラッキングのための新しい TridentAlign とコンテキスト埋め込みモジュールを提案する。
提案トラッカーの性能は最先端トラッカーに匹敵するが,提案トラッカーはリアルタイムに動作可能である。
論文 参考訳(メタデータ) (2020-07-14T08:00:26Z) - A Unified Object Motion and Affinity Model for Online Multi-Object
Tracking [127.5229859255719]
オブジェクトの動きと親和性モデルを単一のネットワークに統一する新しいMOTフレームワークUMAを提案する。
UMAは、単一物体追跡とメートル法学習をマルチタスク学習により統合された三重項ネットワークに統合する。
我々は,タスク認識機能学習を促進するために,タスク固有のアテンションモジュールを装備する。
論文 参考訳(メタデータ) (2020-03-25T09:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。