論文の概要: SuperCon: Supervised Contrastive Learning for Imbalanced Skin Lesion
Classification
- arxiv url: http://arxiv.org/abs/2202.05685v1
- Date: Fri, 11 Feb 2022 15:19:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-14 22:54:51.548088
- Title: SuperCon: Supervised Contrastive Learning for Imbalanced Skin Lesion
Classification
- Title(参考訳): SuperCon: 不均衡皮膚病変分類のためのコントラスト学習
- Authors: Keyu Chen, Di Zhuang, J. Morris Chang
- Abstract要約: SuperConは、皮膚病変分類におけるクラス不均衡問題を克服するための2段階のトレーニング戦略である。
2段階のトレーニング戦略は,クラス不均衡の分類問題に効果的に対処し,F1スコアとAUCスコアの点で既存の作業を大幅に改善する。
- 参考スコア(独自算出の注目度): 9.265557367859637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Convolutional neural networks (CNNs) have achieved great success in skin
lesion classification. A balanced dataset is required to train a good model.
However, due to the appearance of different skin lesions in practice, severe or
even deadliest skin lesion types (e.g., melanoma) naturally have quite small
amount represented in a dataset. In that, classification performance
degradation occurs widely, it is significantly important to have CNNs that work
well on class imbalanced skin lesion image dataset. In this paper, we propose
SuperCon, a two-stage training strategy to overcome the class imbalance problem
on skin lesion classification. It contains two stages: (i) representation
training that tries to learn a feature representation that closely aligned
among intra-classes and distantly apart from inter-classes, and (ii) classifier
fine-tuning that aims to learn a classifier that correctly predict the label
based on the learnt representations. In the experimental evaluation, extensive
comparisons have been made among our approach and other existing approaches on
skin lesion benchmark datasets. The results show that our two-stage training
strategy effectively addresses the class imbalance classification problem, and
significantly improves existing works in terms of F1-score and AUC score,
resulting in state-of-the-art performance.
- Abstract(参考訳): 畳み込みニューラルネットワーク(CNN)は皮膚病変の分類において大きな成功を収めている。
適切なモデルをトレーニングするには、バランスのとれたデータセットが必要です。
しかし、実際には異なる皮膚病変が出現しているため、重度または致命的な皮膚病変(メラノーマなど)はデータセットで表される量が非常に少ない。
その際, 分類性能の低下が顕著であり, クラス不均衡皮膚病変画像データセットでよく機能するCNNを持つことが重要である。
本稿では,皮膚病変分類におけるクラス不均衡問題を克服するための2段階トレーニング戦略であるSuperConを提案する。
ステージは2つある。
(i)クラス内とクラス間が密に連携し、クラス間から離れた特徴表現を学習しようとする表現訓練
(ii)学習表現に基づいてラベルを正確に予測する分類器を学習することを目的とした分類器の微調整
実験的評価では,皮膚病変ベンチマークデータセットに対するアプローチと既存のアプローチとの広範な比較を行った。
その結果,2段階のトレーニング戦略はクラス不均衡の分類問題に効果的に対応し,f1-scoreとaucスコアの点で既存の作業を大幅に改善し,最新性能が得られた。
関連論文リスト
- Addressing Imbalance for Class Incremental Learning in Medical Image Classification [14.242875524728495]
不均衡の悪影響を軽減するために2つのプラグイン法を導入する。
まず、多数派に対する分類バイアスを軽減するために、CILバランスの取れた分類損失を提案する。
第2に,組込み空間におけるクラス間重複を緩和するだけでなく,クラス内コンパクト性も緩和する分布マージン損失を提案する。
論文 参考訳(メタデータ) (2024-07-18T17:59:44Z) - Fairness Evolution in Continual Learning for Medical Imaging [47.52603262576663]
医用画像の分類性能に関する連続学習戦略(CL)の行動について検討した。
我々は,リプレイ,フォーッティングなし学習(LwF),LwF,Pseudo-Label戦略を評価した。
LwF と Pseudo-Label は最適な分類性能を示すが、評価に公正度の測定値を含めると、Pseudo-Label がバイアスが少ないことは明らかである。
論文 参考訳(メタデータ) (2024-04-10T09:48:52Z) - Uncertainty-guided Boundary Learning for Imbalanced Social Event
Detection [64.4350027428928]
本研究では,不均衡なイベント検出タスクのための不確実性誘導型クラス不均衡学習フレームワークを提案する。
我々のモデルは、ほとんど全てのクラス、特に不確実なクラスにおいて、社会イベントの表現と分類タスクを大幅に改善する。
論文 参考訳(メタデータ) (2023-10-30T03:32:04Z) - Balanced Classification: A Unified Framework for Long-Tailed Object
Detection [74.94216414011326]
従来の検出器は、分類バイアスによる長期データを扱う際の性能劣化に悩まされる。
本稿では,カテゴリ分布の格差に起因する不平等の適応的是正を可能にする,BAlanced CLassification (BACL) と呼ばれる統一フレームワークを提案する。
BACLは、さまざまなバックボーンとアーキテクチャを持つさまざまなデータセット間で、一貫してパフォーマンス改善を実現している。
論文 参考訳(メタデータ) (2023-08-04T09:11:07Z) - SPLAL: Similarity-based pseudo-labeling with alignment loss for
semi-supervised medical image classification [11.435826510575879]
半教師付き学習(SSL)メソッドはラベル付きデータとラベルなしデータの両方を活用することで課題を軽減することができる。
医用画像分類のためのSSL法では,(1)ラベルなしデータセットの画像に対する信頼性の高い擬似ラベルの推定,(2)クラス不均衡によるバイアスの低減という2つの課題に対処する必要がある。
本稿では,これらの課題を効果的に解決する新しいSSLアプローチであるSPLALを提案する。
論文 参考訳(メタデータ) (2023-07-10T14:53:24Z) - Dynamic Sub-Cluster-Aware Network for Few-Shot Skin Disease
Classification [31.539129126161978]
本稿では,まれな皮膚疾患の診断における精度を高めるためのサブクラスタ・アウェア・ネットワーク(SCAN)という新しいアプローチを提案する。
SCANの設計を動機づける重要な洞察は、クラス内の皮膚疾患の画像が複数のサブクラスタを示すことが多いという観察である。
数発の皮膚疾患分類のための2つのパブリックデータセットに対する提案手法の評価を行った。
論文 参考訳(メタデータ) (2022-07-03T16:06:04Z) - Dynamic Bank Learning for Semi-supervised Federated Image Diagnosis with
Class Imbalance [65.61909544178603]
クラス不均衡半教師付きFL(imFed-Semi)の実用的かつ困難な問題について検討する。
このImFed-Semi問題は、クラス比例情報を利用してクライアントトレーニングを改善する新しい動的銀行学習方式によって解決される。
25,000個のCTスライスによる頭蓋内出血診断と10,015個の皮膚内視鏡画像による皮膚病変診断の2つの公開実世界の医療データセットに対するアプローチを評価した。
論文 参考訳(メタデータ) (2022-06-27T06:51:48Z) - Cross-Site Severity Assessment of COVID-19 from CT Images via Domain
Adaptation [64.59521853145368]
CT画像によるコロナウイルス病2019(COVID-19)の早期かつ正確な重症度評価は,集中治療単位のイベント推定に有効である。
ラベル付きデータを拡張し、分類モデルの一般化能力を向上させるためには、複数のサイトからデータを集約する必要がある。
この課題は、軽度の感染症と重度の感染症の集団不均衡、部位間のドメイン分布の相違、不均一な特徴の存在など、いくつかの課題に直面する。
論文 参考訳(メタデータ) (2021-09-08T07:56:51Z) - No Fear of Heterogeneity: Classifier Calibration for Federated Learning
with Non-IID Data [78.69828864672978]
実世界のフェデレーションシステムにおける分類モデルのトレーニングにおける中心的な課題は、非IIDデータによる学習である。
このアルゴリズムは, 近似されたssian混合モデルからサンプリングした仮想表現を用いて分類器を調整する。
実験の結果,CIFAR-10,CIFAR-100,CINIC-10など,一般的なフェデレーション学習ベンチマークにおけるCCVRの現状が示された。
論文 参考訳(メタデータ) (2021-06-09T12:02:29Z) - CS-AF: A Cost-sensitive Multi-classifier Active Fusion Framework for
Skin Lesion Classification [9.265557367859637]
畳み込みニューラルネットワーク(CNN)は皮膚病変解析において最先端の性能を達成した。
皮膚病変分類のための費用感受性多型化能動核融合フレームワークCS-AFを提案する。
論文 参考訳(メタデータ) (2020-04-25T05:48:14Z) - Melanoma Detection using Adversarial Training and Deep Transfer Learning [6.22964000148682]
皮膚病変画像の自動分類のための2段階の枠組みを提案する。
第1段階では、条件付き画像合成のタスクにおいて、データ分布のクラス間変動を利用する。
第2段階では,皮膚病変分類のための深部畳み込みニューラルネットワークを訓練する。
論文 参考訳(メタデータ) (2020-04-14T22:46:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。