論文の概要: Fairness Evolution in Continual Learning for Medical Imaging
- arxiv url: http://arxiv.org/abs/2406.02480v1
- Date: Wed, 10 Apr 2024 09:48:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-01 08:19:53.628802
- Title: Fairness Evolution in Continual Learning for Medical Imaging
- Title(参考訳): 医用画像の連続学習における公平さの進化
- Authors: Marina Ceccon, Davide Dalle Pezze, Alessandro Fabris, Gian Antonio Susto,
- Abstract要約: 医用画像の分類性能に関する連続学習戦略(CL)の行動について検討した。
我々は,リプレイ,フォーッティングなし学習(LwF),LwF,Pseudo-Label戦略を評価した。
LwF と Pseudo-Label は最適な分類性能を示すが、評価に公正度の測定値を含めると、Pseudo-Label がバイアスが少ないことは明らかである。
- 参考スコア(独自算出の注目度): 47.52603262576663
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep Learning (DL) has made significant strides in various medical applications in recent years, achieving remarkable results. In the field of medical imaging, DL models can assist doctors in disease diagnosis by classifying pathologies in Chest X-ray images. However, training on new data to expand model capabilities and adapt to distribution shifts is a notable challenge these models face. Continual Learning (CL) has emerged as a solution to this challenge, enabling models to adapt to new data while retaining knowledge gained from previous experiences. Previous studies have analyzed the behavior of CL strategies in medical imaging regarding classification performance. However, when considering models that interact with sensitive information, such as in the medical domain, it is imperative to disaggregate the performance of socially salient groups. Indeed, DL algorithms can exhibit biases against certain sub-populations, leading to discrepancies in predictive performance across different groups identified by sensitive attributes such as age, race/ethnicity, sex/gender, and socioeconomic status. In this study, we go beyond the typical assessment of classification performance in CL and study bias evolution over successive tasks with domain-specific fairness metrics. Specifically, we evaluate the CL strategies using the well-known CheXpert (CXP) and ChestX-ray14 (NIH) datasets. We consider a class incremental scenario of five tasks with 12 pathologies. We evaluate the Replay, Learning without Forgetting (LwF), LwF Replay, and Pseudo-Label strategies. LwF and Pseudo-Label exhibit optimal classification performance, but when including fairness metrics in the evaluation, it is clear that Pseudo-Label is less biased. For this reason, this strategy should be preferred when considering real-world scenarios in which it is crucial to consider the fairness of the model.
- Abstract(参考訳): 近年, 深層学習 (DL) は様々な医学的応用に大きく貢献し, 顕著な成果を上げている。
医学画像学の分野では、DLモデルは、胸部X線画像の病理を分類することで、疾患診断の医師を支援することができる。
しかし、モデル機能を拡張し、分散シフトに適応するための新しいデータトレーニングは、これらのモデルが直面する顕著な課題である。
この課題の解決策として継続的学習(CL)が登場し、モデルが以前の経験から得られた知識を維持しながら、新しいデータに適応することが可能になった。
医学画像におけるCL戦略の分類性能に関する行動分析を行った。
しかし、医療領域などのセンシティブな情報と相互作用するモデルを考えると、社会的に健全な集団のパフォーマンスを分解することが不可欠である。
実際、DLアルゴリズムは特定のサブ人口に対するバイアスを示すことができ、年齢、人種/民族性、性/ジェンダー、社会経済的地位といったセンシティブな属性によって識別される異なるグループ間で予測性能の相違をもたらす。
本研究では、CLにおける分類性能の典型的な評価を超越し、ドメイン固有公平度測定値を用いた連続的なタスクに対するバイアス進化を研究する。
具体的には、よく知られたCheXpert(CXP)とChestX-ray14(NIH)データセットを用いてCL戦略を評価する。
12の病態を持つ5つのタスクからなるクラスインクリメンタルシナリオを考察する。
我々は,リプレイ,フォーミングなし学習(LwF),LwFリプレイ,Pseudo-Label戦略を評価した。
LwF と Pseudo-Label は最適な分類性能を示すが、評価に公正度の測定値を含めると、Pseudo-Label がバイアスが少ないことは明らかである。
このため、この戦略は、モデルの公平性を考えることが不可欠である実世界のシナリオを考える際に好まれる。
関連論文リスト
- Graph-Ensemble Learning Model for Multi-label Skin Lesion Classification
using Dermoscopy and Clinical Images [7.159532626507458]
本研究では,グラフ畳み込みネットワーク(GCN)を導入し,相関行列として各カテゴリ間の先行的共起を多ラベル分類のためのディープラーニングモデルに活用する。
本稿では,GCNからの予測を融合モデルからの予測の補完情報とみなすグラフ・アンサンブル学習モデルを提案する。
論文 参考訳(メタデータ) (2023-07-04T13:19:57Z) - Continual Learning for Tumor Classification in Histopathology Images [0.0]
モデル忘れを緩和する継続的な学習モデルは、デジタル病理学に基づく分析で導入する必要がある。
本稿では,DP設定におけるCLシナリオを提案する。
画像の外観変化をシミュレートするために,大腸癌H&E分類のための拡張データセットを構築した。
乳腺腫瘍H&Eデータセットと大腸癌を併用し,腫瘍タイプ別にCLを評価した。
論文 参考訳(メタデータ) (2022-08-07T01:04:25Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
MedMNISTコレクションの連続的な疾患分類のためのベンチマークであるLifeLongerを紹介する。
タスクとクラスでの病気の漸進的な学習は、モデルをスクラッチから再トレーニングすることなく、新しいサンプルを分類する問題に対処する。
クロスドメインインクリメンタル学習は、これまで得られた知識を維持しながら、異なる機関から派生したデータセットを扱う問題に対処する。
論文 参考訳(メタデータ) (2022-04-12T12:25:05Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z) - Curriculum learning for improved femur fracture classification:
scheduling data with prior knowledge and uncertainty [36.54112505898611]
畳み込みニューラルネットワーク(CNN)を用いた大腿骨近位部骨折の3および7AOクラスへの自動分類法を提案する。
我々の新しい定式化は、トレーニングサンプルを個別に重み付けし、トレーニングセットを再順序付けし、データのサブセットをサンプリングする3つのカリキュラム戦略を再結合する。
このカリキュラムは、経験豊富な外傷外科医のパフォーマンスまで、大腿骨近位部骨折分類を改善している。
論文 参考訳(メタデータ) (2020-07-31T14:28:33Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
我々は、外部のCXRデータセットを組み込むことで、不完全なトレーニングデータにつながると論じ、課題を提起する。
本研究は,多ラベル病分類問題を重み付き独立二分課題として分類する。
我々のフレームワークは、ドメインとラベルの相違を同時にモデル化し、対処し、優れた知識マイニング能力を実現する。
論文 参考訳(メタデータ) (2020-06-06T06:48:40Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
医用画像解析アプリケーションにおけるMICCAI 2018の実践を調査するために,MICCAI 2018の手順を調査した。
意外なことに、診断に焦点を当てた論文では、使用されるデータセットの人口統計がほとんど書かれていないことが判明した。
本研究では,非偏りのある特徴を,対向的な学習環境において,人口統計変数を明示的に使用することにより学習可能であることを示す。
論文 参考訳(メタデータ) (2020-05-20T13:51:01Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。