論文の概要: Multi-Modal Knowledge Graph Construction and Application: A Survey
- arxiv url: http://arxiv.org/abs/2202.05786v1
- Date: Fri, 11 Feb 2022 17:31:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-14 14:00:13.951320
- Title: Multi-Modal Knowledge Graph Construction and Application: A Survey
- Title(参考訳): マルチモーダル知識グラフの構築とその応用:調査
- Authors: Xiangru Zhu, Zhixu Li, Xiaodan Wang, Xueyao Jiang, Penglei Sun, Xuwu
Wang, Yanghua Xiao, Nicholas Jing Yuan
- Abstract要約: 知識グラフのマルチモーダル化は、人間レベルのマシンインテリジェンスの実現に向けた必然的な重要なステップである。
まず、テキストや画像によって構築されたMMKGの定義と、マルチモーダルなタスクやテクニックに関する予備的な定義を示す。
次に,MMKGの構築と適用における課題,進歩,機会を,それぞれ体系的に検討し,それぞれの解の強度と弱さを詳細に分析した。
- 参考スコア(独自算出の注目度): 17.203534055251435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have witnessed the resurgence of knowledge engineering which is
featured by the fast growth of knowledge graphs. However, most of existing
knowledge graphs are represented with pure symbols, which hurts the machine's
capability to understand the real world. The multi-modalization of knowledge
graphs is an inevitable key step towards the realization of human-level machine
intelligence. The results of this endeavor are Multi-modal Knowledge Graphs
(MMKGs). In this survey on MMKGs constructed by texts and images, we first give
definitions of MMKGs, followed with the preliminaries on multi-modal tasks and
techniques. We then systematically review the challenges, progresses and
opportunities on the construction and application of MMKGs respectively, with
detailed analyses of the strength and weakness of different solutions. We
finalize this survey with open research problems relevant to MMKGs.
- Abstract(参考訳): 近年,知識グラフの急速な成長を特徴とする知識工学の復活が注目されている。
しかし、既存の知識グラフのほとんどは純粋なシンボルで表現されており、マシンが現実世界を理解する能力を損なう。
知識グラフのマルチモーダル化は、人間レベルのマシンインテリジェンスの実現に向けた必然的な重要なステップである。
この取り組みの結果はMulti-modal Knowledge Graphs (MMKG)である。
テキストや画像によって構築されたMMKGに関する調査では、まずMMKGの定義を行い、続いてマルチモーダルタスクや技術に関する予備研究を行った。
次に,MMKGの構築と適用における課題,進歩,機会を,それぞれ体系的に検討し,それぞれのソリューションの強度と弱点を詳細に分析した。
本調査をMMKGに関するオープンな研究課題にまとめる。
関連論文リスト
- Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph [38.31983923708175]
本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
論文 参考訳(メタデータ) (2024-06-03T09:38:28Z) - Empowering Small-Scale Knowledge Graphs: A Strategy of Leveraging General-Purpose Knowledge Graphs for Enriched Embeddings [3.7759315989669058]
汎用KGを用いた小規模ドメイン固有知識グラフの埋め込みを充実させるフレームワークを提案する。
実験では、Hits@10測定値で最大44%の上昇が観測された。
この比較的探索されていない研究方向は、知識集約的なタスクにおいて、KGのより頻繁な取り込みを触媒することができる。
論文 参考訳(メタデータ) (2024-05-17T12:46:23Z) - MyGO: Discrete Modality Information as Fine-Grained Tokens for Multi-modal Knowledge Graph Completion [51.80447197290866]
MMKGの微細なモダリティ情報を処理・融合・拡張するためにMyGOを導入する。
MyGOは、マルチモーダルな生データをきめ細かい離散トークンとしてトークン化し、クロスモーダルなエンティティエンコーダでエンティティ表現を学習する。
標準MMKGCベンチマーク実験により,本手法が最新の20モデルを上回ることがわかった。
論文 参考訳(メタデータ) (2024-04-15T05:40:41Z) - Knowledge Graphs Meet Multi-Modal Learning: A Comprehensive Survey [61.8716670402084]
本調査は,KG-driven Multi-Modal Learning(KG4MM)とMulti-Modal Knowledge Graph(MM4KG)の2つの主要な側面におけるKG認識研究に焦点を当てる。
KG対応マルチモーダル学習タスクと本質的MMKGタスクの2つの主要なタスクカテゴリについて検討した。
これらのタスクの多くに対して、定義、評価ベンチマークを提供し、関連する研究を行うための重要な洞察を概説する。
論文 参考訳(メタデータ) (2024-02-08T04:04:36Z) - On the Evolution of Knowledge Graphs: A Survey and Perspective [11.061075842989817]
知識グラフ(KGs)は、多様な知識の構造化された表現であり、様々なインテリジェントなアプリケーションで広く使われている。
我々は,様々な種類のKGの進化と知識抽出・推論技術に関する総合的な調査を行う。
本稿では,知識工学の今後の方向性について考察する。
論文 参考訳(メタデータ) (2023-10-07T14:46:51Z) - A Survey of Knowledge Graph Reasoning on Graph Types: Static, Dynamic,
and Multimodal [57.8455911689554]
知識グラフ推論(KGR)は、知識グラフに基づくマイニング論理則に基づいて、既存の事実から新しい事実を推論することを目的としている。
質問応答やレコメンデーションシステムなど、多くのAIアプリケーションでKGを使うことに大きなメリットがあることが証明されている。
論文 参考訳(メタデータ) (2022-12-12T08:40:04Z) - A Survey on Visual Transfer Learning using Knowledge Graphs [0.8701566919381223]
本調査は知識グラフ(KG)を用いた視覚伝達学習手法に焦点を当てる。
KGは、基礎となるグラフ構造化スキーマやベクトルベースの知識グラフの埋め込みにおいて補助的な知識を表現することができる。
本稿では,知識グラフの埋め込み手法の概要を概説し,それらを高次元の視覚的埋め込みと組み合わせた共同学習の目的について述べる。
論文 参考訳(メタデータ) (2022-01-27T20:19:55Z) - Dynamic Semantic Graph Construction and Reasoning for Explainable
Multi-hop Science Question Answering [50.546622625151926]
マルチホップQAのための説明可能性を得ながら,より有効な事実を活用できる新しいフレームワークを提案する。
a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(a) tt AMR-SG,(c) グラフ畳み込みネットワーク(GCN)を利用した事実レベルの関係モデリング,(c) 推論過程の導出を行う。
論文 参考訳(メタデータ) (2021-05-25T09:14:55Z) - KACC: A Multi-task Benchmark for Knowledge Abstraction, Concretization
and Completion [99.47414073164656]
包括的知識グラフ(KG)は、インスタンスレベルのエンティティグラフとオントロジーレベルの概念グラフを含む。
2ビューのKGは、知識の抽象化、包括化、完成に関する人間の能力を「シミュレーション」するためのモデルのためのテストベッドを提供する。
我々は,データセットのスケール,タスクカバレッジ,難易度の観点から,既存のベンチマークを改善した統一KGベンチマークを提案する。
論文 参考訳(メタデータ) (2020-04-28T16:21:57Z) - A Survey on Knowledge Graphs: Representation, Acquisition and
Applications [89.78089494738002]
我々は,1)知識グラフ表現学習,2)知識獲得と完成,3)時間的知識グラフ,および4)知識認識アプリケーションに関する研究トピックをレビューする。
知識獲得、特に知識グラフの完成、埋め込み方法、経路推論、論理ルール推論について概観する。
メタラーニング、コモンセンス推論、時間的知識グラフなど、いくつかの新しいトピックを探求する。
論文 参考訳(メタデータ) (2020-02-02T13:17:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。