論文の概要: Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph
- arxiv url: http://arxiv.org/abs/2406.01145v1
- Date: Mon, 3 Jun 2024 09:38:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:38:29.347826
- Title: Explore then Determine: A GNN-LLM Synergy Framework for Reasoning over Knowledge Graph
- Title(参考訳): 知識グラフによる推論のためのGNN-LLM構文解析フレームワーク
- Authors: Guangyi Liu, Yongqi Zhang, Yong Li, Quanming Yao,
- Abstract要約: 本稿では,知識グラフ(KGQA)に関する質問応答について述べる。
グラフニューラルネットワーク(GNN)とLarge Language Modelsを相乗化してKGを推論するExplore-then-Determine(EtD)フレームワークを提案する。
EtDは最先端のパフォーマンスを達成し、忠実な推論結果を生成する。
- 参考スコア(独自算出の注目度): 38.31983923708175
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The task of reasoning over Knowledge Graphs (KGs) poses a significant challenge for Large Language Models (LLMs) due to the complex structure and large amounts of irrelevant information. Existing LLM reasoning methods overlook the importance of compositional learning on KG to supply with precise knowledge. Besides, the fine-tuning and frequent interaction with LLMs incur substantial time and resource costs. This paper focuses on the Question Answering over Knowledge Graph (KGQA) task and proposes an Explore-then-Determine (EtD) framework that synergizes LLMs with graph neural networks (GNNs) for reasoning over KGs. The Explore stage employs a lightweight GNN to explore promising candidates and relevant fine-grained knowledge to the questions, while the Determine stage utilizes the explored information to construct a knowledge-enhanced multiple-choice prompt, guiding a frozen LLM to determine the final answer. Extensive experiments on three benchmark KGQA datasets demonstrate that EtD achieves state-of-the-art performance and generates faithful reasoning results.
- Abstract(参考訳): 知識グラフ(KG)に対する推論の課題は、複雑な構造と大量の無関係情報のために、Large Language Models(LLM)にとって大きな課題となる。
既存のLCM推論手法は、正確な知識を提供するため、KGにおける構成学習の重要性を見落としている。
加えて、LLMとの微調整と頻繁な相互作用は、かなりの時間と資源コストを発生させる。
本稿では,知識グラフに対する質問回答(KGQA)タスクに焦点をあて,LLMとグラフニューラルネットワーク(GNN)を相乗化してKGを推論する探索-then-Determine(EtD)フレームワークを提案する。
探索段階(Explore stage)は、有望な候補と質問に対する関連するきめ細かい知識を探索するために軽量なGNNを使用し、決定段階(Determine stage)は、探索された情報を利用して、知識を増強した複数選択プロンプトを構築し、凍結したLLMを誘導して最終回答を決定する。
3つのベンチマークKGQAデータセットの大規模な実験は、EtDが最先端のパフォーマンスを達成し、忠実な推論結果を生成することを示した。
関連論文リスト
- Decoding on Graphs: Faithful and Sound Reasoning on Knowledge Graphs through Generation of Well-Formed Chains [66.55612528039894]
知識グラフ(KG)は質問応答(QA)のための信頼できる知識ソースとして機能する。
我々は、LLMとKGの深い相乗効果を促進する新しいフレームワークであるDoG(Decoding on Graphs)を提案する。
様々なKGQAタスクに対して異なるバックグラウンドKGを用いた実験により、DoGが優れた、堅牢なパフォーマンスを達成することを示す。
論文 参考訳(メタデータ) (2024-10-24T04:01:40Z) - Graph-constrained Reasoning: Faithful Reasoning on Knowledge Graphs with Large Language Models [83.28737898989694]
大規模言語モデル(LLM)は知識ギャップと幻覚のために忠実な推論に苦しむ。
グラフ制約推論(GCR)は、KGにおける構造的知識とLLMにおける非構造的推論を橋渡しする新しいフレームワークである。
GCRは最先端のパフォーマンスを達成し、追加のトレーニングをすることなく、見えないKGに対して強力なゼロショット一般化性を示す。
論文 参考訳(メタデータ) (2024-10-16T22:55:17Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
大規模言語モデル(LLM)は、関連する知識の欠如により、現実世界の応用において幻覚に悩まされることがある。
KGQA(Knowledge Graph Question Answering)は、統合のための重要な手掛かりとなる。
LLMの対話型学習機能を活用してグラフ上での推論と議論を行う対話型KGQAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T01:11:58Z) - KG-RAG: Bridging the Gap Between Knowledge and Creativity [0.0]
大規模言語モデルエージェント(LMA)は、情報幻覚、破滅的な忘れ込み、長いコンテキストの処理における制限といった問題に直面している。
本稿では,LMAの知識能力を高めるため,KG-RAG (Knowledge Graph-Retrieval Augmented Generation)パイプラインを提案する。
ComplexWebQuestionsデータセットに関する予備実験では、幻覚的コンテンツの削減において顕著な改善が示されている。
論文 参考訳(メタデータ) (2024-05-20T14:03:05Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - An Enhanced Prompt-Based LLM Reasoning Scheme via Knowledge Graph-Integrated Collaboration [7.3636034708923255]
本研究では,知識グラフ(KG)と大規模言語モデル(LLM)の緊密な協調を含む協調学習自由推論手法を提案する。
このような協調的な手法により、より信頼性の高い知識に基づく推論を実現し、推論結果の追跡を容易にする。
論文 参考訳(メタデータ) (2024-02-07T15:56:17Z) - KnowledgeNavigator: Leveraging Large Language Models for Enhanced
Reasoning over Knowledge Graph [11.808990571175269]
大規模言語モデル(LLM)は、その強力な自然言語理解とゼロショット能力によって、様々な下流タスクにおいて優れたパフォーマンスを達成しているが、LLMは依然として知識制限に悩まされている。
本稿では,知識グラフから外部知識を効率的に正確に検索し,これらの課題に対処する新しいフレームワークであるKnowledgeNavigatorを提案する。
我々は,複数のKGQAベンチマーク上でKnowledgeNavigatorを評価し,そのフレームワークの有効性と一般化を実証した。
論文 参考訳(メタデータ) (2023-12-26T04:22:56Z) - Reasoning on Graphs: Faithful and Interpretable Large Language Model
Reasoning [104.92384929827776]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な推論能力を示している。
彼らは推論中に最新の知識と幻覚を欠いている。
知識グラフ(KG)は、推論のための信頼できる知識源を提供する。
論文 参考訳(メタデータ) (2023-10-02T10:14:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。