Classification of Microscopy Images of Breast Tissue: Region Duplication
based Self-Supervision vs. Off-the Shelf Deep Representations
- URL: http://arxiv.org/abs/2202.06073v1
- Date: Sat, 12 Feb 2022 14:12:13 GMT
- Title: Classification of Microscopy Images of Breast Tissue: Region Duplication
based Self-Supervision vs. Off-the Shelf Deep Representations
- Authors: Aravind Ravi
- Abstract summary: We propose a novel self-supervision pretext task to train a convolutional neural network (CNN) and extract domain specific features.
Results indicated that the best performance of 99% sensitivity was achieved for the deep features extracted using ResNet50 with concatenation of patch-level embedding.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Breast cancer is one of the leading causes of female mortality in the world.
This can be reduced when diagnoses are performed at the early stages of
progression. Further, the efficiency of the process can be significantly
improved with computer aided diagnosis. Deep learning based approaches have
been successfully applied to achieve this. One of the limiting factors for
training deep networks in a supervised manner is the dependency on large
amounts of expert annotated data. In reality, large amounts of unlabelled data
and only small amounts of expert annotated data are available. In such
scenarios, transfer learning approaches and self-supervised learning (SSL)
based approaches can be leveraged. In this study, we propose a novel
self-supervision pretext task to train a convolutional neural network (CNN) and
extract domain specific features. This method was compared with deep features
extracted using pre-trained CNNs such as DenseNet-121 and ResNet-50 trained on
ImageNet. Additionally, two types of patch-combination methods were introduced
and compared with majority voting. The methods were validated on the BACH
microscopy images dataset. Results indicated that the best performance of 99%
sensitivity was achieved for the deep features extracted using ResNet50 with
concatenation of patch-level embedding. Preliminary results of SSL to extract
domain specific features indicated that with just 15% of unlabelled data a high
sensitivity of 94% can be achieved for a four class classification of
microscopy images.
Related papers
- Local-to-Global Self-Supervised Representation Learning for Diabetic Retinopathy Grading [0.0]
This research aims to present a novel hybrid learning model using self-supervised learning and knowledge distillation.
In our algorithm, for the first time among all self-supervised learning and knowledge distillation models, the test dataset is 50% larger than the training dataset.
Compared to a similar state-of-the-art model, our results achieved higher accuracy and more effective representation spaces.
arXiv Detail & Related papers (2024-10-01T15:19:16Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Learning from few examples: Classifying sex from retinal images via deep
learning [3.9146761527401424]
We showcase results for the performance of DL on small datasets to classify patient sex from fundus images.
Our models, developed using approximately 2500 fundus images, achieved test AUC scores of up to 0.72.
This corresponds to a mere 25% decrease in performance despite a nearly 1000-fold decrease in the dataset size.
arXiv Detail & Related papers (2022-07-20T02:47:29Z) - Application of Transfer Learning and Ensemble Learning in Image-level
Classification for Breast Histopathology [9.037868656840736]
In Computer-Aided Diagnosis (CAD), traditional classification models mostly use a single network to extract features.
This paper proposes a deep ensemble model based on image-level labels for the binary classification of benign and malignant lesions.
Result: In the ensemble network model with accuracy as the weight, the image-level binary classification achieves an accuracy of $98.90%$.
arXiv Detail & Related papers (2022-04-18T13:31:53Z) - Intelligent Masking: Deep Q-Learning for Context Encoding in Medical
Image Analysis [48.02011627390706]
We develop a novel self-supervised approach that occludes targeted regions to improve the pre-training procedure.
We show that training the agent against the prediction model can significantly improve the semantic features extracted for downstream classification tasks.
arXiv Detail & Related papers (2022-03-25T19:05:06Z) - CvS: Classification via Segmentation For Small Datasets [52.821178654631254]
This paper presents CvS, a cost-effective classifier for small datasets that derives the classification labels from predicting the segmentation maps.
We evaluate the effectiveness of our framework on diverse problems showing that CvS is able to achieve much higher classification results compared to previous methods when given only a handful of examples.
arXiv Detail & Related papers (2021-10-29T18:41:15Z) - Hierarchical Self-Supervised Learning for Medical Image Segmentation
Based on Multi-Domain Data Aggregation [23.616336382437275]
We propose Hierarchical Self-Supervised Learning (HSSL) for medical image segmentation.
We first aggregate a dataset from several medical challenges, then pre-train the network in a self-supervised manner, and finally fine-tune on labeled data.
Compared to learning from scratch, our new method yields better performance on various tasks.
arXiv Detail & Related papers (2021-07-10T18:17:57Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.