Generalized hyper-Ramsey-Bord\'e matter-wave interferometry: quantum
engineering of robust atomic sensors with composite pulses
- URL: http://arxiv.org/abs/2202.06296v2
- Date: Wed, 2 Mar 2022 03:46:46 GMT
- Title: Generalized hyper-Ramsey-Bord\'e matter-wave interferometry: quantum
engineering of robust atomic sensors with composite pulses
- Authors: T. Zanon-Willette, D. Wilkowski, R. Lefevre, A.V. Taichenachev, and
V.I. Yudin
- Abstract summary: A new class of atomic interferences using ultra-narrow optical transitions are pushing quantum engineering control to a very high level of precision.
We propose a new quantum engineering approach to Ramsey-Bord'e interferometry introducing multiple composite laser pulses with tailored pulse duration, Rabi field amplitude, frequency detuning and laser phase-step.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A new class of atomic interferences using ultra-narrow optical transitions
are pushing quantum engineering control to a very high level of precision for a
next generation of sensors and quantum gate operations. In such context, we
propose a new quantum engineering approach to Ramsey-Bord\'e interferometry
introducing multiple composite laser pulses with tailored pulse duration, Rabi
field amplitude, frequency detuning and laser phase-step. We explore quantum
metrology with hyper-Ramsey and hyper-Hahn-Ramsey clocks below the $10^-18$
level of fractional accuracy by a fine tuning control of light excitation
parameters leading to spinor interferences protected against light-shift
coupled to laser-probe field variation. We review cooperative composite pulse
protocols to generate robust Ramsey-Bord\'e, Mach-Zehnder and double-loop
atomic sensors shielded against measurement distortion related to
Doppler-shifts and light-shifts coupled to pulse area errors. Fault-tolerant
auto-balanced hyper-interferometers are introduced eliminating several
technical laser pulse defects that can occur during the entire probing
interrogation protocol. Quantum sensors with composite pulses and ultra-cold
atomic sources should offer a new level of high accuracy in detection of
acceleration and rotation inducing phase-shifts, a strong improvement in tests
of fundamental physics with hyper-clocks while paving the way to a new
conception of atomic interferometers tracking space-time gravitational waves
with a very high sensitivity.
Related papers
- Robust Quantum Control via Multipath Interference for Thousandfold Phase Amplification in a Resonant Atom Interferometer [0.4941383238872373]
We introduce a novel technique for enhancing the robustness of light-pulse atom interferometers against the pulse infidelities that typically limit their sensitivities.
We apply this method to a resonant atom interferometer and achieve thousand-fold phase amplification, representing a fifty-fold improvement over the performance observed without optimized control.
We anticipate our findings will significantly benefit the performance of matter-wave interferometers for a variety of applications, including dark matter, dark energy, and gravitational wave detection.
arXiv Detail & Related papers (2024-07-15T21:19:52Z) - Frequency-dependent squeezing for gravitational-wave detection through quantum teleportation [4.647804073850528]
Ground-based interferometric gravitational wave detectors are highly precise sensors for weak forces.
Current and future instruments address this limitation by injecting frequency-dependent squeezed vacuum into the detection port.
This study introduces a novel scheme employing the principles of quantum teleportation and entangled states of light.
arXiv Detail & Related papers (2024-01-09T00:26:25Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Phase Randomness in a Semiconductor Laser: the Issue of Quantum Random
Number Generation [83.48996461770017]
This paper describes theoretical and experimental methods for estimating the degree of phase randomization in a gain-switched laser.
We show that the interference signal remains quantum in nature even in the presence of classical phase drift in the interferometer.
arXiv Detail & Related papers (2022-09-20T14:07:39Z) - Enhancing strontium clock atom interferometry using quantum optimal
control [0.09786690381850353]
We study QOC pulses for strontium clock interferometry and demonstrate their advantage over basic square pulses.
This could improve the scale of large momentum transfer in Sr clock interferometers, paving the way to achieve scientific goals.
arXiv Detail & Related papers (2022-07-26T23:56:33Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - SU(2) hyper-clocks: quantum engineering of spinor interferences for time
and frequency metrology [0.0]
Ramsey's method of separated fields was elaborated boosting over many decades metrological performances of atomic clocks.
A generalization of this interferometric method is presented replacing the two single coherent excitations by arbitrary composite laser pulses.
Hyper-clocks based on three-pulse and five-pulse interrogation protocols are studied and shown to exhibit nonlinear cubic and quintic sensitivities to residual probe-induced light-shifts.
arXiv Detail & Related papers (2021-09-28T09:01:20Z) - Towards probing for hypercomplex quantum mechanics in a waveguide
interferometer [55.41644538483948]
We experimentally investigate the suitability of a multi-path waveguide interferometer with mechanical shutters for performing a test for hypercomplex quantum mechanics.
We systematically analyse the influence of experimental imperfections that could lead to a false-positive test result.
arXiv Detail & Related papers (2021-04-23T13:20:07Z) - Fast high-fidelity single-qubit gates for flip-flop qubits in silicon [68.8204255655161]
flip-flop qubit is encoded in the states with antiparallel donor-bound electron and donor nuclear spins in silicon.
We study the multilevel system that is formed by the interacting electron and nuclear spins.
We propose an optimal control scheme that produces fast and robust single-qubit gates in the presence of low-frequency noise.
arXiv Detail & Related papers (2021-01-27T18:37:30Z) - Hyper Ramsey-Bord\'e matter-wave interferometry for robust quantum
sensors [0.0]
A new generation of atomic sensors using ultra-narrow optical clock transitions and composite pulses are pushing quantum engineering control to a very high level of precision.
We propose a new version of Ramsey-Bord'e interferometry introducing arbitrary composite laser pulses with tailored pulse duration, Rabi field, detuning and phase-steps.
We present, for the first time, new developments for robust hyper Ramsey-Bord'e and Mach-Zehnder interferometers.
arXiv Detail & Related papers (2020-12-07T17:47:28Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.