論文の概要: FlowEval: A Consensus-Based Dialogue Evaluation Framework Using Segment
Act Flows
- arxiv url: http://arxiv.org/abs/2202.06633v1
- Date: Mon, 14 Feb 2022 11:37:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-15 15:55:52.096929
- Title: FlowEval: A Consensus-Based Dialogue Evaluation Framework Using Segment
Act Flows
- Title(参考訳): floweval:segment act flowを用いたコンセンサスに基づく対話評価フレームワーク
- Authors: Jianqiao Zhao, Yanyang Li, Wanyu Du, Yangfeng Ji, Dong Yu, Michael R.
Lyu, Liwei Wang
- Abstract要約: 本稿では,音声レベルからセグメントレベルへのダイアログ行為の拡張であるセグメントアクトを提案し,大規模データセットをクラウドソースする。
セグメントアクトフローを利用するために,セグメントアクションのシーケンスを評価のために,最初のコンセンサスに基づく対話評価フレームワークであるFlowEvalを開発した。
- 参考スコア(独自算出の注目度): 63.116280145770006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent progress in open-domain dialogue evaluation, how to develop
automatic metrics remains an open problem. We explore the potential of dialogue
evaluation featuring dialog act information, which was hardly explicitly
modeled in previous methods. However, defined at the utterance level in
general, dialog act is of coarse granularity, as an utterance can contain
multiple segments possessing different functions. Hence, we propose segment
act, an extension of dialog act from utterance level to segment level, and
crowdsource a large-scale dataset for it. To utilize segment act flows,
sequences of segment acts, for evaluation, we develop the first consensus-based
dialogue evaluation framework, FlowEval. This framework provides a
reference-free approach for dialog evaluation by finding pseudo-references.
Extensive experiments against strong baselines on three benchmark datasets
demonstrate the effectiveness and other desirable characteristics of our
FlowEval, pointing out a potential path for better dialogue evaluation.
- Abstract(参考訳): オープンドメイン対話評価の最近の進歩にもかかわらず、自動メトリクスの開発方法は未解決の問題である。
従来手法では明示的にモデル化されていなかった対話行動情報を用いた対話評価の可能性を検討する。
しかし、一般に発話レベルで定義されるダイアログアクトは、異なる機能を持つ複数のセグメントを含むことができるため、粗い粒度である。
そこで我々は,音声レベルからセグメントレベルへのダイアログ行為の拡張であるセグメントアクトを提案し,大規模データセットをクラウドソースする。
セグメントアクトフローを利用するために,セグメントアクションのシーケンスを評価のために,最初のコンセンサスに基づく対話評価フレームワークであるFlowEvalを開発した。
このフレームワークは、擬似参照を見つけることによって、ダイアログ評価のための参照フリーアプローチを提供する。
3つのベンチマークデータセットの強力なベースラインに対する広範囲な実験は、flowevalの有効性とその他の望ましい特性を示し、より良い対話評価のための潜在的なパスを指摘した。
関連論文リスト
- DiQAD: A Benchmark Dataset for End-to-End Open-domain Dialogue
Assessment [38.26039323208791]
オープンドメインの対話品質を自動的に評価するための大規模対話品質評価データセット(DiQAD)をリリースする。
具体的には,対話の質に関する人間の判断に適合する寸法に基づいて,評価基準を確立する。
また、これらの基準に基づいて実際のユーザ間で会話する大規模な対話を注釈付けし、約10万の対話を含む。
論文 参考訳(メタデータ) (2023-10-25T03:04:57Z) - Toward More Accurate and Generalizable Evaluation Metrics for
Task-Oriented Dialogs [19.43845920149182]
ダイアログ品質と呼ばれる新しいダイアログレベルのアノテーションワークフローを導入する。
DQAの専門家アノテータは、ダイアログ全体の品質を評価し、ゴール完了やユーザ感情などの属性に対するラベルダイアログも評価する。
我々は,大規模音声アシスタントプラットフォームにおける対話品質を評価する上で,高品質なヒューマンアノテートデータを持つことが重要であると論じている。
論文 参考訳(メタデータ) (2023-06-06T19:43:29Z) - SuperDialseg: A Large-scale Dataset for Supervised Dialogue Segmentation [55.82577086422923]
文書地上対話の助けを借りて,対話のセグメンテーションポイントを実現可能な定義を提供する。
我々は,9,478の対話を含むSuperDialsegと呼ばれる大規模教師付きデータセットをリリースする。
また、対話セグメンテーションタスクの5つのカテゴリにまたがる18のモデルを含むベンチマークも提供する。
論文 参考訳(メタデータ) (2023-05-15T06:08:01Z) - Unsupervised Dialogue Topic Segmentation with Topic-aware Utterance
Representation [51.22712675266523]
対話トピック(DTS)は、様々な対話モデリングタスクにおいて重要な役割を果たす。
本稿では,ラベルなし対話データからトピック対応発話表現を学習する,教師なしDSSフレームワークを提案する。
論文 参考訳(メタデータ) (2023-05-04T11:35:23Z) - FCC: Fusing Conversation History and Candidate Provenance for Contextual
Response Ranking in Dialogue Systems [53.89014188309486]
複数のチャネルからコンテキスト情報を統合できるフレキシブルなニューラルネットワークフレームワークを提案する。
会話応答ランキングタスクの評価に広く用いられているMSDialogデータセット上で,本モデルの評価を行った。
論文 参考訳(メタデータ) (2023-03-31T23:58:28Z) - GODEL: Large-Scale Pre-Training for Goal-Directed Dialog [119.1397031992088]
ダイアログのための大規模事前学習言語モデルであるGODELを紹介する。
GODELは、数ショットの微調整設定で、最先端の事前訓練ダイアログモデルより優れていることを示す。
評価手法の新たな特徴は,応答の有用性を評価するユーティリティの概念の導入である。
論文 参考訳(メタデータ) (2022-06-22T18:19:32Z) - Improving Multi-Party Dialogue Discourse Parsing via Domain Integration [25.805553277418813]
マルチパーティ会話は、対話的なターン間のセマンティックレベルの相関によって暗黙的に組織される。
対話談話分析は,基本談話単位間の係り受け構造と関係の予測に応用できる。
対話談話アノテーションを持つ既存のコーパスは、限られたサンプルサイズを持つ特定のドメインから収集される。
論文 参考訳(メタデータ) (2021-10-09T09:36:22Z) - DialogueCSE: Dialogue-based Contrastive Learning of Sentence Embeddings [33.89889949577356]
本稿では,対話型コントラスト学習手法であるDialogueCSEを提案する。
我々は,Microsoft Dialogue Corpus,Jing Dong Dialogue Corpus,E-Commerce Dialogue Corpusの3つの多ターン対話データセットについて評価を行った。
論文 参考訳(メタデータ) (2021-09-26T13:25:41Z) - Rethinking Dialogue State Tracking with Reasoning [76.0991910623001]
本稿では, 対話状態の段階的追跡を, バックエンドデータの助けを借りて行うことを提案する。
実験の結果,MultiWOZ 2.1の連立信条精度は38.6%向上した。
論文 参考訳(メタデータ) (2020-05-27T02:05:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。