Optimizing quantum circuits with Riemannian gradient flow
- URL: http://arxiv.org/abs/2202.06976v2
- Date: Wed, 11 May 2022 14:00:27 GMT
- Title: Optimizing quantum circuits with Riemannian gradient flow
- Authors: Roeland Wiersema, Nathan Killoran
- Abstract summary: Variational quantum algorithms are a promising class algorithms that can be performed on currently available quantum computers.
We consider an alternative optimization perspective that depends on the structure of the special unitary group.
- Score: 0.5524804393257919
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variational quantum algorithms are a promising class of algorithms that can
be performed on currently available quantum computers. In most settings, the
free parameters of a variational circuit are optimized using a classical
optimizer that updates parameters in Euclidean geometry. Since quantum circuits
are elements of the special unitary group, we can consider an alternative
optimization perspective that depends on the structure of this group. In this
work, we investigate a Riemannian optimization scheme over the special unitary
group and we discuss its implementation on a quantum computer. We illustrate
that the resulting Riemannian gradient-flow algorithm has favorable
optimization properties for deep circuits and that an approximate version of
this algorithm can be performed on near-term hardware.
Related papers
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Probabilistic tensor optimization of quantum circuits for the
max-$k$-cut problem [0.0]
We propose a technique for optimizing parameterized circuits in variational quantum algorithms.
We illustrate our approach on the example of the quantum approximate optimization algorithm (QAOA) applied to the max-$k$-cut problem.
arXiv Detail & Related papers (2023-10-16T12:56:22Z) - Randomized Benchmarking of Local Zeroth-Order Optimizers for Variational
Quantum Systems [65.268245109828]
We compare the performance of classicals across a series of partially-randomized tasks.
We focus on local zeroth-orders due to their generally favorable performance and query-efficiency on quantum systems.
arXiv Detail & Related papers (2023-10-14T02:13:26Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
The Quantum Approximate Optimization Algorithm (QAOA) is a highly promising variational quantum algorithm that aims to solve intractable optimization problems.
This comprehensive review offers an overview of the current state of QAOA, encompassing its performance analysis in diverse scenarios.
We conduct a comparative study of selected QAOA extensions and variants, while exploring future prospects and directions for the algorithm.
arXiv Detail & Related papers (2023-06-15T15:28:12Z) - Riemannian quantum circuit optimization for Hamiltonian simulation [2.1227079314039057]
Hamiltonian simulation is a natural application of quantum computing.
For translation invariant systems, the gates in such circuit topologies can be further optimized on classical computers.
For the Ising and Heisenberg models on a one-dimensional lattice, we achieve orders of magnitude accuracy improvements.
arXiv Detail & Related papers (2022-12-15T00:00:17Z) - Surrogate-based optimization for variational quantum algorithms [0.0]
Variational quantum algorithms are a class of techniques intended to be used on near-term quantum computers.
We introduce the idea of learning surrogate models for variational circuits using few experimental measurements.
We then perform parameter optimization using these models as opposed to the original data.
arXiv Detail & Related papers (2022-04-12T00:15:17Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
The Quantum Approximate optimisation algorithm is a $p$ layer, time-variable split operator method executed on a quantum processor.
We prove that optimal parameters for $p=1$ layer reduce to one free variable and in the thermodynamic limit, we recover optimal angles.
We moreover demonstrate that conditions for vanishing gradients of the overlap function share a similar form which leads to a linear relation between circuit parameters, independent on the number of qubits.
arXiv Detail & Related papers (2021-09-23T18:00:13Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
Hybrid quantum-classical algorithms such as Quantum Approximate Optimization Algorithm (QAOA) are considered as one of the most encouraging approaches for taking advantage of near-term quantum computers in practical applications.
Such algorithms are usually implemented in a variational form, combining a classical optimization method with a quantum machine to find good solutions to an optimization problem.
In this study we apply a Cross-Entropy method to shape this landscape, which allows the classical parameter to find better parameters more easily and hence results in an improved performance.
arXiv Detail & Related papers (2020-03-11T13:52:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.