Riemannian quantum circuit optimization for Hamiltonian simulation
- URL: http://arxiv.org/abs/2212.07556v2
- Date: Sat, 25 Nov 2023 22:53:04 GMT
- Title: Riemannian quantum circuit optimization for Hamiltonian simulation
- Authors: Ayse Kotil, Rahul Banerjee, Qunsheng Huang, Christian B. Mendl
- Abstract summary: Hamiltonian simulation is a natural application of quantum computing.
For translation invariant systems, the gates in such circuit topologies can be further optimized on classical computers.
For the Ising and Heisenberg models on a one-dimensional lattice, we achieve orders of magnitude accuracy improvements.
- Score: 2.1227079314039057
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hamiltonian simulation, i.e., simulating the real time evolution of a target
quantum system, is a natural application of quantum computing. Trotter-Suzuki
splitting methods can generate corresponding quantum circuits; however, a
faithful approximation can lead to relatively deep circuits. Here we start from
the insight that for translation invariant systems, the gates in such circuit
topologies can be further optimized on classical computers to decrease the
circuit depth and/or increase the accuracy. We employ tensor network techniques
and devise a method based on the Riemannian trust-region algorithm on the
unitary matrix manifold for this purpose. For the Ising and Heisenberg models
on a one-dimensional lattice, we achieve orders of magnitude accuracy
improvements compared to fourth-order splitting methods. The optimized circuits
could also be of practical use for the time-evolving block decimation (TEBD)
algorithm.
Related papers
- Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
The said algorithm runs on classical hardware and finds shallow, accurate quantum circuits.
All circuits achieve high state fidelities within reasonable CPU time and modest memory requirements.
arXiv Detail & Related papers (2024-08-22T17:48:53Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Hybrid discrete-continuous compilation of trapped-ion quantum circuits with deep reinforcement learning [1.7087507417780985]
We show that we can significantly reduce the size of relevant quantum circuits for trapped-ion computing.
Our framework can also be applied to an experimental setup whose goal is to reproduce an unknown unitary process.
arXiv Detail & Related papers (2023-07-12T14:55:28Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
We introduce AQCtensor, a novel algorithm to produce short-depth quantum circuits from Matrix Product States (MPS)
Our approach is specifically tailored to the preparation of quantum states generated from the time evolution of quantum many-body Hamiltonians.
For simulation problems on 100 qubits, we show that AQCtensor achieves at least an order of magnitude reduction in the depth of the resulting optimized circuit.
arXiv Detail & Related papers (2023-01-20T14:40:29Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Optimizing quantum circuits with Riemannian gradient flow [0.5524804393257919]
Variational quantum algorithms are a promising class algorithms that can be performed on currently available quantum computers.
We consider an alternative optimization perspective that depends on the structure of the special unitary group.
arXiv Detail & Related papers (2022-02-14T19:00:06Z) - Fast Swapping in a Quantum Multiplier Modelled as a Queuing Network [64.1951227380212]
We propose that quantum circuits can be modeled as queuing networks.
Our method is scalable and has the potential speed and precision necessary for large scale quantum circuit compilation.
arXiv Detail & Related papers (2021-06-26T10:55:52Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Low-depth Hamiltonian Simulation by Adaptive Product Formula [3.050399782773013]
Various Hamiltonian simulation algorithms have been proposed to efficiently study the dynamics of quantum systems on a quantum computer.
Here, we propose an adaptive approach to construct a low-depth time evolution circuit.
Our work sheds light on practical Hamiltonian simulation with noisy-intermediate-scale-quantum devices.
arXiv Detail & Related papers (2020-11-10T18:00:42Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.