論文の概要: Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review
- arxiv url: http://arxiv.org/abs/2202.07050v1
- Date: Mon, 14 Feb 2022 21:41:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-17 08:34:00.157659
- Title: Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review
- Title(参考訳): 人工知能ベースのスマートグリッド脆弱性と偽正常攻撃の潜在的な解決策
- Authors: J.D. Ndibwile
- Abstract要約: スマートグリッドシステムは電力業界にとって重要なものだが、その高度なアーキテクチャ設計と運用によって、多くのサイバーセキュリティの脅威にさらされている。
人工知能(AI)ベースの技術は、さまざまなコンピュータ設定でサイバー攻撃を検出することで、ますます人気が高まっている。
現在のAIシステムは、GAN(Generative Adversarial Networks)のような高度な敵系が最近出現したため、公開され、消滅している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart grid systems are critical to the power industry, however their
sophisticated architectural design and operations expose them to a number of
cybersecurity threats, such as data tampering, data eavesdropping, and Denial
of Service, among others. Artificial Intelligence (AI)-based technologies are
becoming increasingly popular for detecting cyber assaults in a variety of
computer settings, and several efforts have been made to secure various
systems. The present AI systems are being exposed and vanquished because of the
recent emergence of sophisticated adversarial systems such as Generative
Adversarial Networks (GAN). The purpose of this short review is to outline some
of the initiatives to protect smart grid systems, their obstacles, and what
might be a potential future AI research direction
- Abstract(参考訳): スマートグリッドシステムは電力業界にとって重要であるが、その高度なアーキテクチャ設計と運用により、データ改ざん、データの盗聴、サービス拒否など、数多くのサイバーセキュリティの脅威にさらされている。
人工知能(ai)ベースの技術は、さまざまなコンピュータ環境でサイバー攻撃を検出するためにますます人気を集めており、様々なシステムを保護するためにいくつかの努力がなされている。
現在のAIシステムは、GAN(Generative Adversarial Networks)のような高度な敵システムの出現により、公開され、消滅している。
この短いレビューの目的は、スマートグリッドシステムとその障害、そして将来のAI研究の方向性について、いくつかのイニシアチブを概説することである。
関連論文リスト
- GAN-GRID: A Novel Generative Attack on Smart Grid Stability Prediction [53.2306792009435]
我々は,現実の制約に合わせたスマートグリッドの安定性予測システムを対象とした,新たな敵攻撃GAN-GRIDを提案する。
以上の結果から,データやモデル知識を欠いた,安定度モデルのみに武装した敵が,攻撃成功率0.99の安定度でデータを作成できることが判明した。
論文 参考訳(メタデータ) (2024-05-20T14:43:46Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection [0.0]
サイバー犯罪は 政府や企業 市民社会に対する 世界的な脅威として現れています
本稿では、現代のデジタルエコシステムを保護するため、AIによるサイバー脅威検出について検討する。
論文 参考訳(メタデータ) (2023-10-15T09:35:56Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
説明可能な人工知能(XAI)は、決定と行動に対して明確かつ解釈可能な説明を提供する機械学習モデルを作成することを目的としている。
ネットワークサイバーセキュリティの分野では、XAIは、サイバー脅威の振る舞いをよりよく理解することで、ネットワークセキュリティへのアプローチ方法に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-07T22:54:18Z) - A Streamlit-based Artificial Intelligence Trust Platform for
Next-Generation Wireless Networks [0.0]
本稿では,NextGネットワークにStreamlitを用いたAI信頼プラットフォームを提案する。
研究者は、敵の脅威に対してAIモデルとアプリケーションを評価し、防御し、認証し、検証することができる。
論文 参考訳(メタデータ) (2022-10-25T05:26:30Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Security and Privacy for Artificial Intelligence: Opportunities and
Challenges [11.368470074697747]
近年、ほとんどのAIモデルは高度なハッキング技術に弱い。
この課題は、敵AIの研究努力を共同で進めるきっかけとなった。
我々は、AIアプリケーションに対する敵攻撃を実証する総合的なサイバーセキュリティレビューを提示する。
論文 参考訳(メタデータ) (2021-02-09T06:06:13Z) - A System for Automated Open-Source Threat Intelligence Gathering and
Management [53.65687495231605]
SecurityKGはOSCTIの収集と管理を自動化するシステムである。
AIとNLP技術を組み合わせて、脅威行動に関する高忠実な知識を抽出する。
論文 参考訳(メタデータ) (2021-01-19T18:31:35Z) - Artificial Intelligence for UAV-enabled Wireless Networks: A Survey [72.10851256475742]
無人航空機(UAV)は次世代無線通信ネットワークにおいて有望な技術であると考えられている。
人工知能(AI)は近年急速に成長し、成功している。
UAVベースのネットワークにおけるAIの潜在的な応用について概観する。
論文 参考訳(メタデータ) (2020-09-24T07:11:31Z) - Machine Learning in Generation, Detection, and Mitigation of
Cyberattacks in Smart Grid: A Survey [1.3299946892361474]
スマートグリッド(スマートグリッド、英: Smart grid、SG)は、現代のサイバー・物理機器を利用した複雑なサイバー物理システムである。
サイバー攻撃は、最先端のシステムの使用と進歩に直面する主要な脅威である。
機械学習(ML)は、攻撃者やシステムオペレーターによるSGのサイバー攻撃を悪用し、防御するために使用されている。
論文 参考訳(メタデータ) (2020-09-01T05:16:51Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。