論文の概要: Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection
- arxiv url: http://arxiv.org/abs/2401.01342v1
- Date: Sun, 15 Oct 2023 09:35:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 10:07:38.621929
- Title: Securing the Digital World: Protecting smart infrastructures and digital
industries with Artificial Intelligence (AI)-enabled malware and intrusion
detection
- Title(参考訳): デジタルワールドのセキュア:人工知能(AI)対応マルウェアと侵入検知によるスマートインフラストラクチャとデジタル産業の保護
- Authors: Marc Schmitt
- Abstract要約: サイバー犯罪は 政府や企業 市民社会に対する 世界的な脅威として現れています
本稿では、現代のデジタルエコシステムを保護するため、AIによるサイバー脅威検出について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The last decades have been characterized by unprecedented technological
advances, many of them powered by modern technologies such as Artificial
Intelligence (AI) and Machine Learning (ML). The world has become more
digitally connected than ever, but we face major challenges. One of the most
significant is cybercrime, which has emerged as a global threat to governments,
businesses, and civil societies. The pervasiveness of digital technologies
combined with a constantly shifting technological foundation has created a
complex and powerful playground for cybercriminals, which triggered a surge in
demand for intelligent threat detection systems based on machine and deep
learning. This paper investigates AI-based cyber threat detection to protect
our modern digital ecosystems. The primary focus is on evaluating ML-based
classifiers and ensembles for anomaly-based malware detection and network
intrusion detection and how to integrate those models in the context of network
security, mobile security, and IoT security. The discussion highlights the
challenges when deploying and integrating AI-enabled cybersecurity solutions
into existing enterprise systems and IT infrastructures, including options to
overcome those challenges. Finally, the paper provides future research
directions to further increase the security and resilience of our modern
digital industries, infrastructures, and ecosystems.
- Abstract(参考訳): 過去数十年は前例のない技術的進歩によって特徴づけられ、その多くは人工知能(AI)や機械学習(ML)といった近代的な技術によって支えられている。
世界はかつてないほどデジタルに接続されてきたが、大きな課題に直面している。
サイバー犯罪は、政府、企業、市民社会に対する世界的な脅威として浮上している。
デジタル技術の普及と常に変化する技術基盤が組み合わさって、サイバー犯罪者の複雑な強力な遊び場が生まれ、機械学習とディープラーニングに基づくインテリジェントな脅威検出システムへの需要が急増した。
本稿では、現代のデジタルエコシステムを保護するため、AIによるサイバー脅威検出について検討する。
主な焦点は、異常ベースのマルウェア検出とネットワーク侵入検出のためのMLベースの分類器とアンサンブルの評価と、それらのモデルをネットワークセキュリティ、モバイルセキュリティ、IoTセキュリティのコンテキストに統合する方法である。
この議論は、AI対応のサイバーセキュリティソリューションを既存のエンタープライズシステムやITインフラストラクチャにデプロイし、統合する際の課題を強調している。
最後に、この論文は、現代のデジタル産業、インフラ、エコシステムのセキュリティとレジリエンスをさらに高めるための将来の研究指針を提供する。
関連論文リスト
- Deepfake Media Forensics: State of the Art and Challenges Ahead [51.33414186878676]
AIが生成する合成メディア、別名Deepfakesは、エンターテイメントからサイバーセキュリティまで、多くの領域に影響を与えている。
ディープフェイク検出は、微妙な矛盾やアーティファクトを機械学習技術で識別することに焦点を当て、研究の不可欠な領域となっている。
本稿では,これらの課題に対処する主要なアルゴリズムについて,その利点,限界,今後の展望について検討する。
論文 参考訳(メタデータ) (2024-08-01T08:57:47Z) - Explainable AI-based Intrusion Detection System for Industry 5.0: An Overview of the Literature, associated Challenges, the existing Solutions, and Potential Research Directions [3.99098935469955]
産業5.0は、製造において様々なタスクを実行するための人間と人工知能(AI)の協力に焦点を当てている。
これらのデバイスと、経済、健康、教育、防衛システムなど、さまざまな重要な分野における相互接続の巨大な関与は、いくつかの潜在的なセキュリティ欠陥を引き起こしている。
XAIは、侵入検知、マルウェア検出、フィッシング検出など、さまざまなサイバーセキュリティ分野において、非常に効果的で強力なツールであることが証明されている。
論文 参考訳(メタデータ) (2024-07-21T09:28:05Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC)は、クラウドコンピューティングと情報技術(IT)サービスをネットワークのエッジで配信できるようにする新しいコンピューティングパラダイムである。
本稿では,人工知能(AI)の観点からMECのセキュリティとプライバシに関する調査を行う。
新たなセキュリティとプライバシの問題に加えて、AIの観点からの潜在的なソリューションにも重点を置いています。
論文 参考訳(メタデータ) (2024-01-03T07:47:22Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - A Survey on Explainable Artificial Intelligence for Cybersecurity [14.648580959079787]
説明可能な人工知能(XAI)は、決定と行動に対して明確かつ解釈可能な説明を提供する機械学習モデルを作成することを目的としている。
ネットワークサイバーセキュリティの分野では、XAIは、サイバー脅威の振る舞いをよりよく理解することで、ネットワークセキュリティへのアプローチ方法に革命をもたらす可能性がある。
論文 参考訳(メタデータ) (2023-03-07T22:54:18Z) - AI Maintenance: A Robustness Perspective [91.28724422822003]
我々は、AIライフサイクルにおけるロバストネスの課題を強調し、自動車のメンテナンスに類似させることで、AIのメンテナンスを動機付ける。
本稿では,ロバストネスリスクの検出と軽減を目的としたAIモデル検査フレームワークを提案する。
我々のAIメンテナンスの提案は、AIライフサイクル全体を通して堅牢性評価、状態追跡、リスクスキャン、モデル硬化、規制を促進する。
論文 参考訳(メタデータ) (2023-01-08T15:02:38Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Artificial Intelligence-Based Smart Grid Vulnerabilities and Potential
Solutions for Fake-Normal Attacks: A Short Review [0.0]
スマートグリッドシステムは電力業界にとって重要なものだが、その高度なアーキテクチャ設計と運用によって、多くのサイバーセキュリティの脅威にさらされている。
人工知能(AI)ベースの技術は、さまざまなコンピュータ設定でサイバー攻撃を検出することで、ますます人気が高まっている。
現在のAIシステムは、GAN(Generative Adversarial Networks)のような高度な敵系が最近出現したため、公開され、消滅している。
論文 参考訳(メタデータ) (2022-02-14T21:41:36Z) - A Research Ecosystem for Secure Computing [4.212354651854757]
コンピュータ、システム、アプリケーションのセキュリティは、コンピュータ科学における何十年にもわたって活発な研究領域であった。
課題は、情報エコシステムのセキュリティと信頼から、敵の人工知能や機械学習までさまざまだ。
新しいインセンティブと教育がこの変化の核心にある。
論文 参考訳(メタデータ) (2021-01-04T22:42:28Z) - Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems [6.459380657702644]
人工知能(AI)と機械学習(ML)はサイバー防衛の鍵となる技術として活用することができる。
本稿では,ネットワーク侵入検出に使用される様々な深層学習手法について検討する。
論文 参考訳(メタデータ) (2020-12-04T23:09:35Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。